People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bouzidi, Youcef
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Potential recovery of glass and carbon fibers from wind turbine blades through different valorization techniquescitations
- 2022Comparative study between different valorization methods of glass fiber waste from end-of-life wind turbine bladescitations
- 2019Waste and material flow analysis in the end-of-life wind energy systemcitations
- 2010LCA allocation procedure used as an incitative method for waste recycling : An application to mineral additions in concretecitations
Places of action
Organizations | Location | People |
---|
article
Potential recovery of glass and carbon fibers from wind turbine blades through different valorization techniques
Abstract
Over the past two decades, the wind turbine industry has grown rapidly. As a result, thousands of tons of composite materials from these end-of-life (EoL) wind turbine blades (WTBs) are discarded every year. Due to their complex structure, which consists of a thermoset matrix with glass (GF) and/or carbon (CF) fibers, their recovery is a challenge and remains limited. The objective of this study is to compare several recycling techniques for composite materials using landfill as a baseline scenario. Several aspects can influence the performance of GF and CF recovery, but one of the most important is the efficiency of recycling technologies in terms of the recovered GF/CF fiber rate. To evaluate this amount of fiber annually, a material flow analysis (MFA) was performed based on the punctual years of 2030, 2040, and 2050.A correlation with other aspects was established and based on maturity level, technical, economic, and environmental aspects. Afterward, recommendations on short and medium/long term circularity objectives were drafted on the most suitable technologies for WTBs circularity.