Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Carvalho, Hermes

  • Google
  • 2
  • 4
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Influence of geometrical imperfections and residual stresses on the reliability of high strength steel welded I-section columns using Monte Carlo simulation8citations
  • 2018Analysis of a main fatigue crack interaction with multiple micro-cracks/voids in a compact tension specimen repaired by stop-hole technique12citations

Places of action

Chart of shared publication
Tankova, Trayana
1 / 4 shared
Silva, Luís Simões Da
1 / 7 shared
Filho, José Osvaldo Ferreira
1 / 1 shared
Malekan, Mohammad
1 / 14 shared
Chart of publication period
2024
2018

Co-Authors (by relevance)

  • Tankova, Trayana
  • Silva, Luís Simões Da
  • Filho, José Osvaldo Ferreira
  • Malekan, Mohammad
OrganizationsLocationPeople

article

Analysis of a main fatigue crack interaction with multiple micro-cracks/voids in a compact tension specimen repaired by stop-hole technique

  • Carvalho, Hermes
  • Malekan, Mohammad
Abstract

<p>Fatigue is a process in engineering materials in which damage accumulates due to the fluctuating loading. One solution for a component under the fatigue process is to arrest the crack propagation before the final failure using different available retardation methods, such as drilling/stop-hole technique. In addition, structural components may also suffer from the existence of micro-cracks or voids due to their forming process or service lives. These micro-cracks/voids are very critical to study, since they can effectively play an important role in the behavior of the existing main crack in a component. This article aims to investigate the effect of the stop-hole retardation technique and multiple micro-cracks/voids with different characteristic lengths and geometries on the fatigue crack propagation in a compact tension specimen. A modified Forman equation, the so-called NASGRO equation is used to define the transition between crack initiation and crack growth period. Also, the extended finite element method is adapted in the crack propagation phase in order to model crack path in the geometry eliminating the need for remeshing procedure. The whole analyses are conducted in a commercial package through a user-written code that handles all fatigue crack growth analysis. The reference solutions from the literature are used to compare and to validate results obtained from current work.</p>

Topics
  • impedance spectroscopy
  • phase
  • crack
  • fatigue
  • forming
  • void