People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sack, I.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024On the relationship between viscoelasticity and water diffusion in soft biological tissues.citations
- 2022Mechanical behavior of the hippocampus and corpus callosum: An attempt to reconcile ex vivo with in vivo and micro with macro properties.citations
- 2021Real-Time Multifrequency MR Elastography of the Human Brain Reveals Rapid Changes in Viscoelasticity in Response to the Valsalva Maneuver.citations
- 2020Cardiac-gated steady-state multifrequency magnetic resonance elastography of the brain: Effect of cerebral arterial pulsation on brain viscoelasticity.citations
- 2019Sensitivity of multifrequency magnetic resonance elastography and diffusion-weighted imaging to cellular and stromal integrity of liver tissue.citations
- 2018Combining viscoelasticity, diffusivity and volume of the hippocampus for the diagnosis of Alzheimer's disease based on magnetic resonance imaging.citations
- 2015Tabletop magnetic resonance elastography for the measurement of viscoelastic parameters of small tissue samples.citations
- 2014High-resolution mechanical imaging of the kidney.citations
- 2014Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis.citations
- 2014In vivo time-harmonic multifrequency elastography of the human liver.citations
- 2013Compression-sensitive magnetic resonance elastography.citations
- 2013Isovolumetric elasticity alteration in the human heart detected by in vivo time-harmonic elastography.citations
- 2012Fractal network dimension and viscoelastic powerlaw behavior: I. A modeling approach based on a coarse-graining procedure combined with shear oscillatory rheometry.citations
- 2010Viscoelasticity-based MR elastography of skeletal muscle.citations
- 2010Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography.citations
- 2010Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography.citations
- 2008Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography.citations
- 2008Assessment of liver viscoelasticity using multifrequency MR elastography.citations
- 2007Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain.citations
- 2007Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity.citations
- 2006Shear wave group velocity inversion in MR elastography of human skeletal muscle.citations
- 2003Electromagnetic actuator for generating variably oriented shear waves in MR elastography.citations
- 2002Analysis of wave patterns in MR elastography of skeletal muscle using coupled harmonic oscillator simulations.
Places of action
Organizations | Location | People |
---|
article
Cardiac-gated steady-state multifrequency magnetic resonance elastography of the brain: Effect of cerebral arterial pulsation on brain viscoelasticity.
Abstract
In-vivo brain viscoelasticity measured by magnetic resonance elastography (MRE) is a sensitive imaging marker for long-term biophysical changes in brain tissue due to aging and disease; however, it is still unknown whether MRE can reveal short-term periodic alterations of brain viscoelasticity related to cerebral arterial pulsation (CAP). We developed cardiac-gated steady-state MRE (ssMRE) with spiral readout and stroboscopic sampling of continuously induced mechanical vibrations in the brain at 20, 31.25, and 40 Hz frequencies. Maps of magnitude |G*| and phase ϕ of the complex shear modulus were generated by multifrequency dual visco-elasto inversion with a temporal resolution of 40 ms over 4 s. The method was tested in 12 healthy volunteers. During cerebral systole, |G*| decreased by 6.6 ± 1.9% (56 ± 22 Pa, p < 0.001, mean ± SD), whereas ϕ increased by 0.5 ± 0.5% (0.006 ± 0.005 rad, p = 0.002). The effect size of CAP-induced softening slightly decreased with age by 0.10 ± 0.05% per year ( p = 0.04), indicating lower cerebral vascular compliance in older individuals. Our data show for the first time that the brain softens and becomes more viscous during systole, possibly due to an effect of CAP-induced arterial expansion and increased blood volume on effective-medium tissue properties. This sensitivity to vascular-solid tissue interactions makes ssMRE potentially useful for detection of cerebral vascular disease.