Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tripathi, Abhishek

  • Google
  • 3
  • 10
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Microstructure evolution and mechanical properties of friction welded IN713LC and AISI 41401citations
  • 2020Transformations, Recrystallization, Microtexture and Plasticity in Titanium Alloys16citations
  • 2015Microstructural origin of friction stir processed zone in a magnesium alloy6citations

Places of action

Chart of shared publication
Singh, R. K. P.
1 / 1 shared
Mishra, M. K.
1 / 1 shared
Balasundar, I.
1 / 2 shared
Gaikwad, V. T.
1 / 1 shared
Reddy, G. Madhusudhan
1 / 2 shared
Srinivasan, N.
1 / 2 shared
Tewari, Asim
1 / 1 shared
Samajdar, Indradev
1 / 11 shared
Doherty, Roger D.
1 / 1 shared
Nie, Jian Feng
1 / 2 shared
Chart of publication period
2024
2020
2015

Co-Authors (by relevance)

  • Singh, R. K. P.
  • Mishra, M. K.
  • Balasundar, I.
  • Gaikwad, V. T.
  • Reddy, G. Madhusudhan
  • Srinivasan, N.
  • Tewari, Asim
  • Samajdar, Indradev
  • Doherty, Roger D.
  • Nie, Jian Feng
OrganizationsLocationPeople

article

Microstructure evolution and mechanical properties of friction welded IN713LC and AISI 4140

  • Tripathi, Abhishek
  • Singh, R. K. P.
  • Mishra, M. K.
  • Balasundar, I.
  • Gaikwad, V. T.
Abstract

<jats:p> The microstructure and mechanical behavior of rotary friction-welded IN713LC nickel-base superalloy with AISI 4140 steel have been investigated. The microstructure of IN713LC changed from a columnar dendritic structure to equiaxed grains due to dynamic recrystallization with considerable change in in-grain misorientation, morphology, and volume fraction of gamma prime (γ′) precipitates. The observations indicate a counteracting effect of heat input and degree of deformation which resulted in achieving minimum grain size at an intermediate friction pressure. Phase transformation was observed in the weld interface/thermomechanically affected zone region of AISI 4140 steel. These changes in microstructure contribute to the variation in the microhardness across the weld joint. Furthermore, a maximum weld joint tensile strength of 922 MPa was observed at an intermediate friction pressure of 110 MPa. </jats:p>

Topics
  • morphology
  • grain
  • nickel
  • grain size
  • phase
  • strength
  • steel
  • precipitate
  • tensile strength
  • recrystallization
  • superalloy