Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wellen, Renate Maria Ramos

  • Google
  • 2
  • 10
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Tuning the mechanical and thermomechanical properties through the combined effect of crosslinking and annealing in poly(lactic acid)/<scp>acrylonitrile‐EPDM</scp>‐styrene blends5citations
  • 2023On the Production of Poly(Lactic Acid) (PLA) Compounds with Metallic Stearates Based on Zinc, Magnesium and Cobalt. Investigation of Torque Rheometry and Thermal Properties4citations

Places of action

Chart of shared publication
Silva, Adriano Lima Da
1 / 1 shared
Nascimento, Emanuel Pereira Do
1 / 1 shared
Ferreira, Eduardo Da Silva Barbosa
1 / 2 shared
Luna, Carlos Bruno Barreto
2 / 6 shared
Araújo, Edcleide Maria
1 / 6 shared
Albuquerque, Ananda Karoline Camelo De
1 / 1 shared
Souza, Dayanne Diniz De
1 / 2 shared
Carvalho, Laura Hecker De
1 / 1 shared
Silva, Renata Arcelino Da
1 / 1 shared
Cordeiro, Edson Souza
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Silva, Adriano Lima Da
  • Nascimento, Emanuel Pereira Do
  • Ferreira, Eduardo Da Silva Barbosa
  • Luna, Carlos Bruno Barreto
  • Araújo, Edcleide Maria
  • Albuquerque, Ananda Karoline Camelo De
  • Souza, Dayanne Diniz De
  • Carvalho, Laura Hecker De
  • Silva, Renata Arcelino Da
  • Cordeiro, Edson Souza
OrganizationsLocationPeople

article

On the Production of Poly(Lactic Acid) (PLA) Compounds with Metallic Stearates Based on Zinc, Magnesium and Cobalt. Investigation of Torque Rheometry and Thermal Properties

  • Souza, Dayanne Diniz De
  • Wellen, Renate Maria Ramos
  • Carvalho, Laura Hecker De
  • Silva, Renata Arcelino Da
  • Luna, Carlos Bruno Barreto
  • Cordeiro, Edson Souza
Abstract

<jats:p> The addition effects of zinc (Zn), cobalt (Co), and magnesium (Mg) based metallic stearates into poly (lactic acid) (PLA) matrix were investigated through torque rheometry, thermogravimetry (TG) and in the Differential Scanning Calorimetry (DSC). PLA compounds/metallic stearates were processed using an internal laboratory mixer with 0.25 wt% Zn, Co, and Mg. Torque rheometry results indicated that PLA/stearate compounds showed higher thermomechanical degradation during processing related to PLA. PLA viscosity is reduced upon stearates addition, especially in the compound with Zn. This behavior suggested PLA chain scission in the presence of metallic stearates during processing, corroborating the decrease in the torque plots. PLA/Zn started to lose weight at lower temperatures than the other compounds, indicating higher pro-oxidant potential. It was observed that Co and Zn significantly reduced the glass transition temperature (Tg), as well as PLA’s crystalline parameters, which suggests PLA’s molecular scission during processing, heading to greater flexibility and reducing Tg. Zn stearate was the most aggressive to PLA’s thermomechanical degradation, suggesting a stronger pro-degradant effect. </jats:p>

Topics
  • impedance spectroscopy
  • compound
  • Magnesium
  • Magnesium
  • zinc
  • glass
  • glass
  • viscosity
  • thermogravimetry
  • glass transition temperature
  • differential scanning calorimetry
  • cobalt
  • rheometry