Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Edirisinghe, Dg

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Preparation of skim natural rubber and polypropylene blends <i>via</i> melt blending: A study on physico-mechanical propertiescitations

Places of action

Chart of shared publication
Wijewardane, Dhanushka
1 / 1 shared
Senevirathna, Masr
1 / 1 shared
Siriwardena, Susantha
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Wijewardane, Dhanushka
  • Senevirathna, Masr
  • Siriwardena, Susantha
OrganizationsLocationPeople

article

Preparation of skim natural rubber and polypropylene blends <i>via</i> melt blending: A study on physico-mechanical properties

  • Edirisinghe, Dg
  • Wijewardane, Dhanushka
  • Senevirathna, Masr
  • Siriwardena, Susantha
Abstract

<jats:p> High percentage of non-rubbers in Skim Natural Rubber (SNR) has restricted its use in manufacture of advanced rubber products. SNR were melt blended with polypropylene (PP) at different blend ratios to generate thermoplastic elastomers (TPEs). Standard Lanka Rubber (SLR) and PP blends were also prepared for the purpose of comparison. Tensile, hysteresis, hardness, water absorption, and dynamic mechanical properties of unvulcanized (UV) and dynamically vulcanized (DV) SNR/PP and SLR/PP blends were compared. Stress-strain behavior and TPE characteristics of both blends were similar. Tensile strength and modulus of SNR/PP blends decreased with the increase of SNR percentage. Elongation at break showed a decrease in UV blends and maxima at 50:50 blend ratio for DV blends. Dynamic vulcanization of the rubber phase improved tensile properties and hardness of the blends. Water absorption studies showed significantly higher equilibrium moisture content in SNR/PP blends, while difference in this property diminished with the increase of rubber phase. Water absorption and equilibrium moisture content decreased with dynamic vulcanization of rubber phase. Dynamic mechanical analysis confirmed multi-phase microstructure of the blends. Both blend systems showed similar dynamic mechanical properties and almost comparable thermo-mechanical properties confirming the potential of SNR as an alternative to SLR for selected applications. </jats:p>

Topics
  • microstructure
  • melt
  • strength
  • stress-strain behavior
  • hardness
  • tensile strength
  • thermoplastic
  • rubber
  • dynamic mechanical analysis
  • elastomer
  • thermoplastic elastomer