Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hernández, Fabián E.

  • Google
  • 1
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Correlation between mechanical and microstructural properties of vulcanized polyisoprene, polychloroprene, and nitrile-butadiene rubber subjected to accelerated thermal aging8citations

Places of action

Chart of shared publication
Moraga, G.
1 / 1 shared
Medina, C.
1 / 17 shared
Báez-Cruz, R.
1 / 1 shared
Meléndrez, Mf
1 / 2 shared
Ramírez, J.
1 / 1 shared
Flores, P.
1 / 8 shared
Jaramillo, Af
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Moraga, G.
  • Medina, C.
  • Báez-Cruz, R.
  • Meléndrez, Mf
  • Ramírez, J.
  • Flores, P.
  • Jaramillo, Af
OrganizationsLocationPeople

article

Correlation between mechanical and microstructural properties of vulcanized polyisoprene, polychloroprene, and nitrile-butadiene rubber subjected to accelerated thermal aging

  • Moraga, G.
  • Hernández, Fabián E.
  • Medina, C.
  • Báez-Cruz, R.
  • Meléndrez, Mf
  • Ramírez, J.
  • Flores, P.
  • Jaramillo, Af
Abstract

<jats:p> The purpose of this work was to correlate the effects of thermal aging on the macroscopic properties and microstructural changes for three vulcanized rubber types. The materials were subjected to accelerated thermal aging for periods between 0 and 168 h at 100°C. This aging was evaluated by investigating the mechanical properties and by Fourier transform infrared (FTIR) and Raman analysis. The results showed that subjecting the materials to thermal aging for a longer time decreased the elongation at break and tear strength and increased the hardness, while tensile strength exhibited different behavior and followed a different trend. The spectroscopy analyses indicated that there is a decrease in the amount of C=C present in the polymer as the aging time increased, which could be identified by the decrease in peak intensity at 1537 and 1600 cm<jats:sup>−1</jats:sup> in the FTIR and Raman spectrum, respectively. These results were attributed mainly to an increase in cross-link density, which caused degradation of the material, essentially by a loss of ductility. A good linear relation ( R<jats:sup>2</jats:sup> approximately 0.95) between changes in the intensity of FTIR peaks for the C=C signal and changes in elongation at break and hardness was found, concluding that these are good indicators of degradation in elastomers. </jats:p>

Topics
  • density
  • impedance spectroscopy
  • strength
  • hardness
  • aging
  • tensile strength
  • ductility
  • rubber
  • aging
  • elastomer
  • nitrile