People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seide, Gunnar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Synthesis, mechanical characterisation and modeling of super flexible silica aerogels and their joining techniques
- 2022Curcumin and Silver Doping Enhance the Spinnability and Antibacterial Activity of Melt-Electrospun Polybutylene Succinate Fiberscitations
- 2022Pilot-Scale Electrospinning of PLA Using Biobased Dyes as Multifunctional Additivescitations
- 2020The effect of additives and process parameters on the pilot-scale manufacturing of polylactic acid sub-microfibers by melt electrospinningcitations
- 2020The Effect of Dye and Pigment Concentrations on the Diameter of Melt-Electrospun Polylactic Acid Fiberscitations
- 2020Pilot-scale production of polylactic acid nanofibers by melt electrospinningcitations
- 2019Novel Bicomponent Functional Fibers with Sheath/Core Configuration Containing Intumescent Flame-Retardants for Textile Applicationscitations
- 2019Pilot-scale fabrication and analysis of graphene-nanocomposite fiberscitations
- 2019The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of their Melt-Spinnabilitycitations
- 2019From Lab to Pilot Scale: Melt Electrospun Nanofibers of Polypropylene with Conductive Additives
- 2019Investigation of the Flammability and Thermal Stability of Halogen-Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formationcitations
Places of action
Organizations | Location | People |
---|
article
The effect of additives and process parameters on the pilot-scale manufacturing of polylactic acid sub-microfibers by melt electrospinning
Abstract
<p>Sub-microfibers are polymer filaments less than 1 mu m in diameter that can be fabricated into highly flexible materials with a large specific surface area. They are often produced by solvent or melt electrospinning. The former is a scalable process that produces thinner fibers but requires hazardous solvents, whereas the latter is more environmentally sustainable due to the absence of solvents but is more challenging to scale up. Here we investigated the manufacturing of biobased polylactic acid (PLA) sub-microfibers by melt electrospinning using a single-nozzle laboratory-scale device and a novel 600-nozzle pilot-scale device combined with conductive and viscosity-reducing additives: sodium stearate (NaSt), sodium chloride (NaCl) and a polyester-based plasticizer. We determined the effect of different additive concentrations on fiber diameter, thermal properties, polymer degradation, and fiber deposition. At the laboratory scale, the minimum average fiber diameter (16.44 mu m) was accomplished by adding 2% (w/w) NaCl, but a stable spinning process was not achieved and the plasticizer did not reduce the melt viscosity. NaSt was the most effective additive in terms of adapting the material properties of PLA for melt electrospinning, but extensive polymer degradation occurred at higher temperatures and with higher concentrations of the additive. At the pilot-scale, the minimum average fiber diameter (3.77 mu m) was achieved by adding 6% (w/w) NaSt, with a spinneret temperature of 195celcius and a spin pump speed of 0.5 rpm (0.16 cm(3)), without further improvements such as the integration of a heating chamber. The smallest single-fiber diameter (1.23 mu m) was achieved under the same conditions but using a spin pump speed of 2 rpm. The scaled-up melt-electrospinning device therefore offers significant potential for the production of biobased sub-microfibers, bridging the gap between laboratory-scale and pilot-scale manufacturing.</p>