Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Islam, Ammara

  • Google
  • 1
  • 2
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Double-diffusive stagnation point flow over a vertical surface with thermal radiation: Assisting and opposing flows26citations

Places of action

Chart of shared publication
Mahmood, Zafar
1 / 2 shared
Khan, Umar
1 / 9 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mahmood, Zafar
  • Khan, Umar
OrganizationsLocationPeople

article

Double-diffusive stagnation point flow over a vertical surface with thermal radiation: Assisting and opposing flows

  • Mahmood, Zafar
  • Khan, Umar
  • Islam, Ammara
Abstract

<jats:p> In numerous industrial procedures, the main concern of design engineers is ensuring adequate heat and mass transfer, such as in the heating and cooling practices of solar water heaters, geothermal systems, extrusion of metal, insulation of buildings, electronics, turbines, aerodynamics, electronics, paper manufacturing, and glass fiber production. The unsteady double-diffusive mixed convection flow of boundary layer nanofluids above a vertical region near stagnation point flow is developed and examined here. The Brownian motion and thermophoresis effects are incorporated by using Buongiorno's model. In the thermal energy equations, diffusion of regular and cross types is also used. By the use of the local similarity method along with suitable similarity transformations, nonlinear unsteady partial differential equations are converted to nonlinear ordinary differential equations and are numerically solved by the Keller–Box method. The investigation expresses that these profiles of solute concentration and nanoparticle concentration, temperature, and velocity in their boundary layers, respectively, depending on several parameters. A graphic analysis of all these parameters' possessions on nature's boundary layers is depicted. The highest rate of heat transfer is obtained with negligible thermophoresis effect. Furthermore, it is perceived that an increase in Nc and Nt results in a reduction in the reduced Sherwood number of nanoparticles, whereas addition results in an increase in the Nb number. There is a reverse effect on the temperature field and layer thickness for heat generation. In the wake of the above-mentioned potential applications, the current study of fluid flow has been found to be very interesting and innovative in the analysis of the influence of Brownian motion and thermophoresis effects near stagnation point flow, which will further make revolutions in industrial fields. Moreover, Buongiorno's model predicts the characteristics of double-diffusive fluids in enhancing heat transfers. This investigation has been established as a result of the numerous industrial applications mentioned above. </jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • extrusion
  • glass
  • glass