People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Walmsley, Anthony Damien
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Antibiotic entrapment in antibacterial micelles as a novel strategy for the delivery of challenging antibiotics from silica nanoparticlescitations
- 2021Biofilm viability checkercitations
- 2013Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentinecitations
- 2009Ultrasonic Scaler Oscillations and Tooth-surface Defectscitations
- 2007Influence of compressive and deflective force on powered toothbrush filaments
Places of action
Organizations | Location | People |
---|
article
Ultrasonic Scaler Oscillations and Tooth-surface Defects
Abstract
Damage to tooth root surfaces may occur during ultrasonic cleaning with both piezoelectric and magnetostrictive ultrasonic scalers. It is unclear which mechanism causes more damage or how their mechanism of action leads to such damage. Our null hypothesis is that tooth-surface defect dimensions, resulting from instrumentation with ultrasonic scalers, are independent of whether the scaler probe is magnetostrictive or piezoelectric. Piezoelectric and magnetostrictive ultrasonic scaler probes were placed into contact against polished dentin samples (100 g/200 g). Resulting tooth surfaces were evaluated with a laser metrology system. Ultrasonic instrumentation produced an indentation directly related to the bodily movement of the probe as it made an impact on the surface. Load, generator power, and probe cross-section significantly affected probe vibration and defect depth/volume. Defect dimensions were independent of generator type. Magnetostrictive probes oscillated with greater displacement amplitudes than piezoelectric probes, but produced similar defects. This may be due to the cross-sectional shape of the probes.