People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomas, Carlos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Assessment of damping and flexural behaviour of hybrid fibre-particulate composites
- 2024Sandwich structures of aluminium skins and egg-box-shaped cores made with biobased foam and compositescitations
- 2023Ultrasonic pulse velocity and physical properties of hybrid composites: A statistical approachcitations
- 2021Physical-Mechanical Properties of Cupola Slag Cement Pastecitations
- 2019High-Frequency Fatigue Testing of Recycled Aggregate Concretecitations
Places of action
Organizations | Location | People |
---|
article
Assessment of damping and flexural behaviour of hybrid fibre-particulate composites
Abstract
<jats:p> Hybrid composites are an advanced solution that offers multifunctional capabilities, including exceptional strength-to-weight ratios, vibrational damping and impact absorption. This work describes the damping capacity and flexural behaviour of a hybrid fibrous-particulate system composed of glass/carbon fabrics and three distinct micro-inclusions: silica particles, carbon waste microfibres, and cement. A statistical methodology based on the full factorial design is applied to identify the effects of fibre stacking sequence, including carbon-C<jats:sub>5</jats:sub>, glass-G<jats:sub>5</jats:sub>, C<jats:sub>2</jats:sub>G<jats:sub>3</jats:sub>, G<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>, GCGCG and CG<jats:sub>3</jats:sub>C, microparticle inclusions and matrix/fibre volume fraction (40/60 and 60/40) on damping and bending responses. A non-linear finite element (FE) analysis is conducted to explore the stress distribution based on the stacking sequence and predict the failure mechanisms of the hybrid laminate. The results indicate significant interaction effects, with hybrid architectures showcasing approximately 33% higher performance compared to glass fibre composites. A greater dependence on the fibre layup sequence is found for the damping factor, flexural modulus and strength. Notably, the incorporation of silica microparticles leads to an increase in flexural strength. Furthermore, a greater volume fraction of the matrix phase enhances the rheological efficiency in terms of the fibre-particle interface. Carbon fibre layers placed symmetrically on both beam sides (CG<jats:sub>3</jats:sub>C) and bottom layers (G<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>) significantly enhance the bending performance of hybrid composites. </jats:p>