Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Goodhew, Benjamin

  • Google
  • 1
  • 4
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of processing methods on the electrical conductivity properties of silver-polyurethane composite films (Experimental and numerical studies)3citations

Places of action

Chart of shared publication
González, Sergio
1 / 15 shared
Sanchez-Vicente, Yolanda
1 / 3 shared
Mehvari, Saeid
1 / 4 shared
Lafdi, Khalid
1 / 32 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • González, Sergio
  • Sanchez-Vicente, Yolanda
  • Mehvari, Saeid
  • Lafdi, Khalid
OrganizationsLocationPeople

article

Effect of processing methods on the electrical conductivity properties of silver-polyurethane composite films (Experimental and numerical studies)

  • Goodhew, Benjamin
  • González, Sergio
  • Sanchez-Vicente, Yolanda
  • Mehvari, Saeid
  • Lafdi, Khalid
Abstract

<jats:p> This research investigates the electrical properties of micro silver polyurethane (Ag-PU) composite films with different degrees of agglomeration. Ag-PU composite films were prepared by adding micro silver particles (&lt;3.5 μm) into the thermoplastic PU matrix using a solution mixing method, followed by spin-coating or casting techniques. For some composite preparation, the silver solution was shear-mixed in an ultrasonic bath before being added to the PU solution to obtain higher filler dispersion within the polymer matrix. This method produced several composite films with variable degrees of silver aggregation with concentrations from 0 to 14 vol%. All composites showed only electrical conductivity through thickness when compressed under pressure in a range from 0.5 to 20 kPa. Generally, the percolation threshold and conductivity values of the composite film prepared by spin-coating were lower than those of the casting composite. The maximum conductivity value found in these composites was about 2.45 S/m. All composites’ electrical performance was numerically simulated using the finite element analysis method based on the representative volume element model (FE-RVE) with Digimat software. A correlation was observed between the experiments and those simulations. A semi-analytical model was used to estimate the composite electrical parameters. </jats:p>

Topics
  • dispersion
  • silver
  • experiment
  • simulation
  • composite
  • ultrasonic
  • casting
  • thermoplastic
  • finite element analysis
  • electrical conductivity