Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fischer, Frederic

  • Google
  • 2
  • 12
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Thermocouple based process optimization for laser assisted automated fiber placement of CF/LM-PAEK1citations
  • 2022RESISTANCE WELDING OF LOW-MELT POLYARYLETHERKETONE: PROCESS DEFINITION AND OPTIMIZATIONcitations

Places of action

Chart of shared publication
Kupke, Michael
2 / 5 shared
Harig, Jonas
1 / 1 shared
Brandt, Lars
1 / 7 shared
Deden, Dominik
1 / 7 shared
Bauer, Simon
1 / 2 shared
Ferstl, Stefan
1 / 2 shared
Jarka, Stefan
1 / 3 shared
Larsen, Lars-Christian
1 / 1 shared
Gadletz, Victor
1 / 1 shared
Endraß, Manuel
1 / 4 shared
Thomè, Anton
1 / 1 shared
Gänswürger, Philipp
1 / 3 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Kupke, Michael
  • Harig, Jonas
  • Brandt, Lars
  • Deden, Dominik
  • Bauer, Simon
  • Ferstl, Stefan
  • Jarka, Stefan
  • Larsen, Lars-Christian
  • Gadletz, Victor
  • Endraß, Manuel
  • Thomè, Anton
  • Gänswürger, Philipp
OrganizationsLocationPeople

article

Thermocouple based process optimization for laser assisted automated fiber placement of CF/LM-PAEK

  • Kupke, Michael
  • Fischer, Frederic
  • Harig, Jonas
  • Brandt, Lars
  • Deden, Dominik
Abstract

Self-commitments and increasing legal requirements lead to the compulsion to reduce carbon dioxide emissions in commercial aerospace. One viable approach is the reduction of structural mass, that would reduce emissions for every flight. This is especially true for high cadence singe aisle aircrafts. However, high quantities are required in this segment. To achieve these goals the newly developed low-melt Poly-Aryl-Ether-Ketone (LM-PAEK), a high-performance carbon fiber-reinforced thermoplastic composite was chosen to build a full-scale multi-functional fuselage demonstrator (MFFD) in order to delevelop an automated process that shows these savings. Single-step automated Fiber Placement (AFP) with in-situ consolidation offers distinct advantages in this field with its short curing times and especially by eliminating high amounts of waste otherwise caused by vacuum bagging and related tasks for post-consolidation in an autoclave. In order to ready this technology for future aircraft production this paper demonstrates how the processing window for LM-PAEK tape (TC1225) provided by TORAY was established. By closely linking robot and end-effector data with positionally accurate thermocouple measurements, the determined mechanical properties at coupon level and micro-sections of the manufactured specimens can be precisely correlated. This holistic approach is independent of the placement equipment and may enable global comparability within the community working in the field of thermoplastic AFP. In conclusion the procedure is evaluated and possible simplifications are discussed.

Topics
  • impedance spectroscopy
  • Carbon
  • melt
  • composite
  • thermoplastic
  • ketone
  • curing