Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lacoste, Catherine

  • Google
  • 4
  • 7
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024A comparative study on the influence of fiber enzymatic treatment in thermal, morphological and mechanical properties of PBS matrix reinforced with different date palm fibers: Under accelerated UV radiation exposure2citations
  • 2023Investigating the influence of the aging process on the rheological and mechanical properties of composites based on PBS matrix and enzymatically treated date palm fibers5citations
  • 2023Effect of processing conditions on the rheological and mechanical properties of composites based on a PBS matrix and enzymatically treated date palm fibers5citations
  • 2021Alfa fibers for Cereplast bio-composites reinforcement: Effects of chemical and biological treatments on the mechanical properties7citations

Places of action

Chart of shared publication
Bradai, Chedly
4 / 7 shared
Dony, Philippe
3 / 4 shared
Chaari, Rania
3 / 3 shared
Kharrat, Fatma
2 / 2 shared
Khlif, Mohamed
1 / 1 shared
Belguith, Hafedh
1 / 1 shared
Werchefani, Mouna
1 / 1 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Bradai, Chedly
  • Dony, Philippe
  • Chaari, Rania
  • Kharrat, Fatma
  • Khlif, Mohamed
  • Belguith, Hafedh
  • Werchefani, Mouna
OrganizationsLocationPeople

article

Investigating the influence of the aging process on the rheological and mechanical properties of composites based on PBS matrix and enzymatically treated date palm fibers

  • Lacoste, Catherine
  • Bradai, Chedly
  • Dony, Philippe
  • Chaari, Rania
  • Kharrat, Fatma
Abstract

<jats:p> Over the past few decades, biodegradable polymers based on natural fibers, such as date palm fibers, have become increasingly popular as an alternative to traditional composites using inorganic fillers. These composites' properties determine their application in various fields; however, when exposed to ultraviolet (UV) rays in outdoor environments, their structure may change, leading to a decrease in their overall properties. Therefore, understanding the long-term behavior of composites following UV aging is of great importance. The aim of this study was to investigate the effect of UV irradiation on the performance of poly (butylene succinate) (PBS) biocomposites reinforced with different mass content of raw date palm fibers ( Phoenix dactylifera L.). The impact of enzymatically treated fibers, using a combination of pectinase and xylanase enzymes, on the properties of the biocomposites after being exposed to an accelerated aging process was also highlighted. All of the specimens were sampled after 100 h and 700 h of accelerated aging for laboratory characterizations. Their mechanical properties were determined by tensile tests. Rheological analyses were conducted by multi-wave tests and revealed two main phenomena resulting from UV aging; molecular chain scission and crosslinking. Tensile tests showed that the addition of raw fibers to the reference matrix resulted in a better resistance of the mechanical properties to the accelerated aging process. It was also found that the rigidity of the composites based on enzymatically modified fibers was approximately 37% higher than those loaded with raw fibers, at the same charge rate (20%) and after the same aging period (700 h). </jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • composite
  • aging
  • aging