People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gries, Thomas
RWTH Aachen University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024A Review on False-Twist Texturingcitations
- 2024Towpreg manufacturing and characterization for filament winding applicationcitations
- 2024Shape-Setting of Self-Expanding Nickel–Titanium Laser-Cut and Wire-Braided Stents to Introduce a Helical Ridgecitations
- 2024Investigation of thermolabile particles for debonding on demand in fiber reinforced composites
- 2024Thermoplastic bicomponent‐fibers for organosheets via inline polymerization
- 2024Recycling potential of carbon fibres in the construction industry: From a technical and ecological perspectivecitations
- 2024Potential of Pressure Slip Casted All-Oxide CMC Elements for Use in Gas Turbine Systems
- 2023Influence of hybrid nano/micro particles on the mechanical performance of cross-ply carbon fibre fabric reinforced epoxy polymer composite materialscitations
- 2023Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivitycitations
- 2023Structural Performance of Textile Reinforced 3D-Printed Concrete Elementscitations
- 2023Toward a Greener Bioeconomy: Synthesis and Characterization of Lignin–Polylactide Copolymerscitations
- 2023Effect of thermoplastic impregnation on the mechanical behaviour of textile reinforcement for concretecitations
- 2023Functionalization of All-Oxide CMC Elements Using 3D Braiding and Pressure Slip Casting for Composite Processing: Approaches to Reduce the Filter Effect of Dense Reinforcement Textiles
- 2022Analysis of Curing and Mechanical Performance of Pre-Impregnated Carbon Fibers Cured within Concretecitations
- 2022Large-Scale Tungsten Fibre-Reinforced Tungsten and Its Mechanical Propertiescitations
- 2022Material characterisation of biaxial glass-fibre non-crimp fabrics as a function of ply orientation, stitch pattern, stitch length and stitch tensioncitations
- 2022Investigation of Cost-Effective Braided and Wound Composite Pipelines for Hydrogen Applicationscitations
- 20224D-textiles: development of bistable textile structures using rapid prototyping and the bionic approachcitations
- 2022Aachen Technology Overview of 3D Textile Materials and Recent Innovation and Applicationscitations
- 2022Textile reinforcement structures for concrete construction applications––a reviewcitations
- 2022Curing Adhesives with Woven Fabrics Made of Polymer Optical Fibre and PET Yarncitations
- 2021Damping Properties of Hybrid Composites Made from Carbon, Vectran, Aramid and Cellulose Fiberscitations
- 2021Preparation of Hollow Fiber Membranes Based On Poly(4-methyl-1-pentene) for Gas Separationcitations
- 2021Structural Analysis of Melt-Spun Polymer-Optical Poly(Methyl Methacrylate) Fibres by Small-Angle X-ray Scattering and Monte-Carlo Simulationcitations
- 2021Process Chain Development for the Fabrication of Three-Dimensional Braided Oxide Ceramic Matrix Compositescitations
- 2020Novel Low-Twist Bast Fibre Yarns from Flax Tow for High-Performance Composite Applicationscitations
- 2019Finite element modeling to predict the steady-state structural behavior of 4D textilescitations
Places of action
Organizations | Location | People |
---|
article
Influence of hybrid nano/micro particles on the mechanical performance of cross-ply carbon fibre fabric reinforced epoxy polymer composite materials
Abstract
<jats:p> This study presents the flexural strength, compressive strength, and impact energy behaviour of graphene nanoplates and fly ash microparticle-loaded cement-based CFRP composites manufactured by the vacuum-assisted resin infusion method (VARIM). The composite structures consist of a fixed ratio of graphene nanoplates (2%), fly ash (2%), silica (2%), cement (2%), and sand (4%) particles filled into cross-plied carbon fibre-reinforced epoxy resin polymer composite beams and columns. Composites fabricated by hand lay-up methods because of infiltration problems. A three-point bending test through the width was used to measure the flexural strength of the graphene nanoplate (GnP)-filled CFRP composite beam. The low-velocity Izod impact and Charpy impact tests through the thickness were used to determine Charpy impact energy (3.46 J), Izod impact energy (2.5 J), and the dynamic fracture toughness of notch specimens under Charpy (28.5 KJ/m<jats:sup>2</jats:sup>) and Izod impact (25.0 KJ/m<jats:sup>2</jats:sup>). Also, the compressive test method was used to measure the compressive strength of hybrid particles and short glass fibre-reinforced epoxy resin composite square and circular columns. The results show compressive strength and flexural strength. Izod impact energy, Charpy impact energy, and dynamic fracture toughness of hybrid nano/microparticle-filled fibre composites have higher values than virgin fibre composites because of the influence of graphene nanoparticles and the perfect interface bonding between two dissimilar molecules of nano and microparticles, which improve the fracture toughness and absorb impact energy. Overall, the results show that molecules of nano/microparticle-filled carbon fibre and glass fibre-reinforced epoxy resin composites can be used in seismic wave resistance because of their improved mechanical properties compared to virgin fibre composites. In addition, SEM micrographs clearly show that nano- and microparticles are resistant to crack propagation and the debonding of matrix fibres. </jats:p>