Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hernandez, Pedro Galvez

  • Google
  • 2
  • 1
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Annotator bias and its effect on deep learning segmentation of uncured composite micrographscitations
  • 2023The effect of convolutional neural network architectures on phase segmentation of composite material X-ray micrographs11citations

Places of action

Chart of shared publication
Kratz, James
2 / 46 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Kratz, James
OrganizationsLocationPeople

article

The effect of convolutional neural network architectures on phase segmentation of composite material X-ray micrographs

  • Kratz, James
  • Hernandez, Pedro Galvez
Abstract

Porosity severely reduces the mechanical performance of composite laminates and methods for automatic segmentation of void phases are growing. This study investigates porosity in composite materials that take the form of interlaminar voids and dry tow areas. Deep Learning was used for the segmentation of X-ray micrographs via the implementation of eight state-of-the-art Convolutional Neural Network (CNN) architectures trained with data sets containing twenty-five, fifty, and one-hundred images. The combination of hyperparameters providing the highest accuracy for each architecture and training set size was achieved through the optimisation of six relevant hyperparameters, including the cut-off probability applied to output probability maps. Additionally, the properties of the CNN architectures (e.g., layer typology, connections, density…) were found to play a determining role, not only in the segmentation results but also in the associated computing effort. U-Net and FCDenseNet outperformed the FCN-8s, FCN-16, SegNet, LinkNet, ResNet18 and Xception CNN architectures. However, the CNNs generally outperformed the standard thresholding approaches, especially in sub-volumes containing low porosity (1.07%) where the influence on strength is very sensitive in high-performance composites. In low porosity samples, U-Net and FCDenseNet consistently segmented voids to 85% + accuracy, whereas thresholding was only half as accurate, at around 40%. The results provide a strong motivation to replace thresholding as a segmentation method for composite X-ray micrographs. In terms of efficiency, the reduced complexity of the U-Net network allowed for an average reduction of the training time (−36%) and prediction time (−17%) when compared to FCDenseNet.

Topics
  • density
  • impedance spectroscopy
  • phase
  • strength
  • composite
  • void
  • porosity