Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Scheurer, Martin

  • Google
  • 3
  • 12
  • 61

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Structural Performance of Textile Reinforced 3D-Printed Concrete Elements1citations
  • 2022Analysis of Curing and Mechanical Performance of Pre-Impregnated Carbon Fibers Cured within Concrete9citations
  • 2022Textile reinforcement structures for concrete construction applications––a review51citations

Places of action

Chart of shared publication
Gries, Thomas
3 / 27 shared
Dittel, Gözdem
1 / 3 shared
Osswald, Michael
1 / 1 shared
Evers, Clara
1 / 1 shared
Meyer-Brötz, Fabian
1 / 1 shared
Patel, Ankiet
1 / 1 shared
Matschei, Thomas
1 / 2 shared
Kalthoff, Matthias
1 / 2 shared
Raupach, Michael
1 / 18 shared
Cherif, Chokri
1 / 112 shared
Hahn, Lars
1 / 17 shared
Friese, Danny
1 / 8 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Gries, Thomas
  • Dittel, Gözdem
  • Osswald, Michael
  • Evers, Clara
  • Meyer-Brötz, Fabian
  • Patel, Ankiet
  • Matschei, Thomas
  • Kalthoff, Matthias
  • Raupach, Michael
  • Cherif, Chokri
  • Hahn, Lars
  • Friese, Danny
OrganizationsLocationPeople

article

Textile reinforcement structures for concrete construction applications––a review

  • Scheurer, Martin
  • Gries, Thomas
  • Cherif, Chokri
  • Hahn, Lars
  • Friese, Danny
Abstract

The use of non-metallic, textile reinforcement structures in place of steel reinforcement is a key component in making concrete constructions more sustainable and durable than they currently are. The reason for this is the corrosion resistance of textile reinforcements, which makes it possible to reduce the thickness of the concrete cover and at the same time extend the service life of concrete structures. This reduces the amount of cement required and thus also the emission of the greenhouse gas carbon dioxide. By means of textile manufacturing technologies, customized, load-adapted reinforcement topologies can be adjusted to the requirements of highly stressed and well-designed concrete components. The objective of this paper is to give an overview of recent research literature dedicated to textile reinforcement structures that are already used for concrete applications in the construction industry as well as those currently under development. Therefore, textile reinforcement structures, which are divided into one-, two- and three-dimensional topologies, as well as common materials used for textile-reinforced concrete are reviewed. Most research has so far been devoted to two-dimensional textile reinforcement structures. Furthermore, novel approaches to the fabrication of textile reinforcement structures for concrete applications based on robotic yarn deposition technologies are addressed.:1.) Introduction 2.) Materials for textile reinforcement structures for construction applications 3.) Textile reinforcement structures for construction applications 4.) New developments in robot-supported manufacturing technologies for construction applications 5.) Conclusion

Topics
  • Deposition
  • impedance spectroscopy
  • Carbon
  • corrosion
  • steel
  • cement
  • two-dimensional