Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Poon, Kim-Leng

  • Google
  • 1
  • 3
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Recovery of impact-damaged carbon fiber–reinforced composites using induction heating10citations

Places of action

Chart of shared publication
Subeshan, Balakrishnan
1 / 1 shared
Bayazeid, Sultan M.
1 / 1 shared
Asmatulu, Eylem
1 / 4 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Subeshan, Balakrishnan
  • Bayazeid, Sultan M.
  • Asmatulu, Eylem
OrganizationsLocationPeople

article

Recovery of impact-damaged carbon fiber–reinforced composites using induction heating

  • Subeshan, Balakrishnan
  • Poon, Kim-Leng
  • Bayazeid, Sultan M.
  • Asmatulu, Eylem
Abstract

<jats:p> Carbon fiber–reinforced composites (CFRCs) have been used extensively in structural applications within the aerospace and automotive manufacturing industries. However, several other applications have been recognized. These take advantage of the additional properties of CFRCs, which lead to providing better performance for structures. However, in their service environment, these CFRCs are inevitably susceptible to impact damage from multiple sources, and they must be able to recover from impacts to meet structural requirements. This study directs an experimental investigation of using induction heating (IH) for an impact-damaged CFRC. Here, IH process parameters, including the effects of electromagnetic frequency and generator power on the recovery of impact-damaged CFRC, have been analyzed. The anisotropic conductivity characteristics and the relationship between the drop-weight impact depth and conductivity of CFRC garnered much attention. This paper also offers the electromagnetic properties of CFRC for various applications. In this study, CFRC cured samples were obtained from Cetex® TC1200 PEEK, AS4 145 gsm, 16 unidirectional plies. Three variants of CFRC samples were tested: undamaged samples; samples with impact damage introduced in the center by a drop-weight impact test, according to the ASTM D7136/7136M standard; and samples with drop-weight impact damage recovered using the IH system. This work presents the results of the tensile strength of CFRC samples to assess the comparison of undamaged samples, samples damaged after the drop-weight impact test, and samples recovered after the drop-weight impact test. IH is appropriate for the recovery of impact-damaged CFRC samples, aiding in the conversion of electromagnetic energy to heat in order to generate mechanisms on components to recover the impact-damaged CFRC samples. Experimental results show that the impact-damaged area of the recovered CFRC samples is 37.0% less than that of damaged CFRC samples, and tensile strength results also improved after the impact-damaged CFRC samples were recovered. These results show that the IH method can effectively improve the impact damage performance of CFRC. The outcome of this study is promising for use in many applications, especially in the aerospace and automotive industries. </jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • laser emission spectroscopy
  • strength
  • anisotropic
  • composite
  • impact test
  • tensile strength