People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferreira, André A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Effects of CNTs addition on the microstructure and microhardness of stainless steel alloy/carbon-manganese non-alloyed steel welding
Abstract
<jats:p> In recent years some progress has been made about the addition of Carbon Nanotubes (CNTs) in the stainless steel metal matrix by pulsed Gas Tungsten Arc Welding (P-GTAW). Despite that, there is lack of information regarding to microstructural modifications induced by CNTs in dissimilar welding. In this sense, we present the welding of nanocomposite based on Nickel/Carbon Nanotubes-stainless steel 316L alloy (Ni/CNTs-SS 316L), as the welding metal, on carbon-manganese (C-Mn) non-alloyed structural steel, as the base metal. The microstructure of manufactured specimens with/without nanocomposite was characterized by: optical microscopy; Raman spectroscopy; scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and electron backscattering diffraction (EBSD). Moreover, Vickers tests were performed from the welding metal (WM) to the base metal (BM) before/after temper treatment in order to investigate the microhardness changes. The results show that dilution rate and grain size for specimen with nanocomposite was higher than without nanocomposite; the CNTs affected the misorientation angle and texture of the WM; the topside microhardness from WM with Ni-CNTs was on average 30.40% higher than BM; and, in transverse cross-section microhardness was 31% higher than control sample on average at fusion line zone. These results indicate that addition of CNTs in the metallic matrix by dissimilar welding is a fertile ground for new studies applicable to manufacturing industry. </jats:p>