People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barandun, Gion Andrea
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Recyclable flame retardant phosphonated epoxy based thermosets enabled via a reactive approachcitations
- 2023Fatigue Assessment of Carbon Fiber-Reinforced Polyurethane with Regard to Crack Initiation and Propagationcitations
- 2020Effect of different filler reinforcement on poly-ether-ether-ketone based nanocomposites for bearing applicationscitations
- 2017Comparative characterization of quasi-static and cyclic deformation behavior of glass fiber-reinforced polyurethane (GFR-PU) and epoxy (GFR-EP)citations
Places of action
Organizations | Location | People |
---|
article
Effect of different filler reinforcement on poly-ether-ether-ketone based nanocomposites for bearing applications
Abstract
<jats:p> This study investigates the effect of dispersion of nanofiller reinforcement high performance polymer matrix to enhance the thermo-mechanical properties for bearing application. Polyetheretherketone (PEEK) matrix is reinforced with acid fucntionalized multiwalled carbon nanotubes ( f-MWCNTs) and similar matrix was then reinforced with nano tungsten carbide (nano WC) to comparatively present their mechanical, thermal and morphological properties. The Nanocomposites were prepared via melt compounding method followed by injection moulding technique. The PEEK/ f-MWCNT s nanocomposite exhibited better property enhancement than the PEEK/nano WC. Spectroscopical analysis confirmed the effectiveness of improved interfacial adhesion between PEEK and f-MWCNTs. Transmission Electron Microscope (TEM) micrograph depicted improved dispersion of f-MWCNTs in PEEK matrix than that of nano WC. Due to improved interfacial interaction between f-MWCNT s and PEEK, this resulting nanocomposite showed better mechanical, thermal and morphological properties than PEEK/nano WC. Due to ceramic nature of nano WC and higher density difference the agglomeration of particles occurred leading to lower properties. </jats:p>