Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mazur, Karolina

  • Google
  • 2
  • 9
  • 53

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020The Effect of Antibacterial Particle Incorporation on the Mechanical Properties, Biodegradability, and Biocompatibility of PLA and PHBV Composites33citations
  • 2019Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbon fibres20citations

Places of action

Chart of shared publication
Unterweger, Harald
1 / 6 shared
Kuciel, Stanisław
1 / 2 shared
Salasinska, Kamila
2 / 10 shared
Friedrich, Ralf P.
1 / 2 shared
Singh, Raminder
1 / 2 shared
Genç, Hatice
1 / 2 shared
Bogucki, Rafał
1 / 1 shared
Cicha, Iwona
1 / 8 shared
Kuciel, Stanislaw
1 / 2 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Unterweger, Harald
  • Kuciel, Stanisław
  • Salasinska, Kamila
  • Friedrich, Ralf P.
  • Singh, Raminder
  • Genç, Hatice
  • Bogucki, Rafał
  • Cicha, Iwona
  • Kuciel, Stanislaw
OrganizationsLocationPeople

article

Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbon fibres

  • Salasinska, Kamila
  • Kuciel, Stanislaw
  • Mazur, Karolina
Abstract

<jats:p> This paper describes the hybridization of basalt and carbon fibres in polyamide 6 by injection moulding method and the analyses of the mechanical, morphological, fire, and smoke properties of the obtained materials. The content of basalt/carbon fibres in hybrid composites amounted to 5/5 wt%, 7/7 wt%, and 10/10 wt%. The addition of fibres resulted in an increase in mechanical properties of the examined materials, was reflected by the threefold increase of Young modulus for the composites containing 10/10 wt% of fibres. To investigate the aging, the samples were stored in distilled water for 1, 7, 14, 100, and 210 days. After 210 days, a significant decrease in mechanical properties was observed. Interestingly, the addition of fibres caused a 50% reduction in stiffness, whereas, in the case of neat polyamide 6, the decrease was about 78%. Additionally, the addition of fibres reduced water sorption. With the increasing fibre load, the decrease in the maximum average rate of heat emission was observed. In the case of composites containing 10 wt% of basalt fibres and 10 wt% of carbon fibres, it amounted to 207 kW/m<jats:sup>2</jats:sup> and was lower by approx. 37% in comparison to the unmodified polymer. </jats:p>

Topics
  • polymer
  • Carbon
  • composite
  • aging
  • aging