People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rad, Saeed Doagou
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020An application-oriented roadmap to select polymeric nanocomposites for advanced applications: A reviewcitations
- 2019Investigation of conductive hybrid polymer composites reinforced with copper micro fibers and carbon nanotubes produced by injection moldingcitations
- 2019Development of metal–graphene-filled hybrid composites: Characterization of mechanical, thermal, and electrical propertiescitations
- 2019Multiscale molecular dynamics-FE modeling of polymeric nanocomposites reinforced with carbon nanotubes and graphenecitations
- 2018Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocompositescitations
- 2018Development of Highly Conductive Hybrid Composites
- 2018Interaction of nanofillers in injection-molded graphene/carbon nanotube reinforced PA66 hybrid nanocompositescitations
- 2018Damping Behavior of Carbon Nanotube Reinforced Nanocomposites: Micromechanical Modeling and Experiments
- 2017Investigation of the mechanical properties of GNP/MWCNT reinforced PA66 hybrid nanocomposites
- 2017Multi-Scale Modeling of the Structural and Vibrational Behavior of Carbon Nanotube Reinforced Polymeric Nanocomposite Plates
- 2017Influence of Processing Conditions on the Mechanical Behavior of MWCNT Reinforced Thermoplastic Nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Development of metal–graphene-filled hybrid composites: Characterization of mechanical, thermal, and electrical properties
Abstract
Production and properties of thermally and electrically conductive polymeric composites containing conductive micro and nano fillers are investigated. Mechanical, electrical, and thermal properties of the produced nano and hybrid Polyamide 6–based composites filled with graphene nanoplatelets and metal microfibers are studied. The influence of nanofiller content and geometrical characteristics on the thermal conductivity of the composites are studied through experiments and finite element modeling. The results show the influence of nanoplatelets aspect ratio and lateral dimension on the thermal conductivity of the composites. Furthermore, combination of graphene nanoplatelets and metallic micro-scale fillers leads to significant improvements in thermal and electrical conductivities. In fact, graphene nanoplatelets act as conductive bridges in minuscule gaps to increase the number of contacts in the constructed network. The combination of the two different fillers increased the mechanical properties up to 120% compared to the metal reinforced composites, indicating stronger interfaces between the fillers and polymeric matrix. Rheological investigations also confirm the effectiveness of hybridization. Furthermore, the influence of annealing on the conductivities of the specimens are studied. Adding an annealing step following the nanofiller inclusion within the composites resulted in 151 and 72% enhancement in the thermal and electrical conductivities, respectively. Stress relaxation and reorientation of metal fibers in combination with additionally constructed nanofiller networks have been attributed to the observed enhancements. The involved mechanisms in the observed behaviors are studied using optical and electron microscopies.