People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saeedi, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Design and multiphysical modeling of SMA-driven bi-stable structures with efficient energy consumptioncitations
- 20233D Printing and Shape Memory Alloys
- 2021Viscoelastic behavior of epoxy resin reinforced with shape-memory-alloy wirescitations
- 2019A novel self-healing composite made of thermally reversible polymer and shape memory alloy reinforcementcitations
- 2019Experimental investigation on the smart self‐healing composites based on the short hollow glass fibers and shape memory alloy stripscitations
- 2018Dynamic response of laminated composite beam reinforced with shape memory alloy wires subjected to low velocity impact of multiple massescitations
- 2016Static and vibration properties of randomly oriented shape memory alloy short wires reinforced epoxy resincitations
- 2016Evaluation of the effective mechanical properties of shape memory wires/epoxy composites using representative volume elementcitations
Places of action
Organizations | Location | People |
---|
article
Dynamic response of laminated composite beam reinforced with shape memory alloy wires subjected to low velocity impact of multiple masses
Abstract
<jats:p> The response of laminated hybrid composite beam with embedded shape memory alloy wires subjected to impact of multiple masses is analytically investigated. Two degree of freedom spring-mass system and Fourier series are used in order to study the low velocity impact phenomenon on the resulting hybrid composite beam. A linearized contact law is chosen to calculate the contact force history. The effect of pseudo elasticity of wires as well as the recovery stresses generated in shape memory alloy wires due to shape memory effect is investigated. The beam is subjected to impactors with various masses, radii, and initial velocities. Impacts are occurred on the top and/or bottom surface of the beam. The effects of volume fraction of shape memory alloy wires, location of embedded wires, location of impacts and pre-strain in shape memory alloy wires on the contact force history and the deflection curve of the beam are investigated. The obtained results illustrated that embedding shape memory alloy wires in the laminated composite beam caused the deflection of the beam to occur more local at the points of impact, in comparison with the beams without shape memory alloy wires. Moreover, embedding 0.2 volume fraction of the shape memory alloy wires reduced the maximum deflection of the beam subjected to impact of 2 impactor masses by 57% and 3 impactor masses (on both sides) by 12%. Pre-straining the wires caused more reduction in deflection of the beam under impact loading. </jats:p>