Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhang, Danning

  • Google
  • 3
  • 2
  • 75

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Characterization of interlayer air permeability of thermoplastic prepreg stacks11citations
  • 2017Determination of void statistics and statistical representative volume elements in carbon fiber-reinforced thermoplastic prepregs25citations
  • 2017Void reduction of high-performance thermoplastic composites via oven vacuum bag processing39citations

Places of action

Chart of shared publication
Heider, Dirk
3 / 10 shared
Gillespie, John W.
3 / 6 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Heider, Dirk
  • Gillespie, John W.
OrganizationsLocationPeople

article

Void reduction of high-performance thermoplastic composites via oven vacuum bag processing

  • Heider, Dirk
  • Gillespie, John W.
  • Zhang, Danning
Abstract

<jats:p> In this study, void reduction mechanisms during oven vacuum bag processing of high-performance carbon fiber thermoplastic composites are investigated. Entrapped air exists within the prepreg tape and between layers during lay-up and must be removed during processing to achieve aerospace quality (&lt;1% void content) Key void reduction mechanisms during oven vacuum bag processing include through-thickness air diffusion and in-plane flow to the laminate edges through the permeable interlayer regions created by the prepreg surface roughness. Interlayer permeability between unidirectional and cross-ply laminates is measured experimentally and is sufficiently high for effective air removal during oven vacuum bag processing. Thick 72-layer carbon fiber/PEEK (poly (ether ether ketone)) laminates were fabricated with oven vacuum bag process under different edge sealing conditions. Void reduction in the laminate with sealed perimeter is dominated by air diffusion through the entire laminate thickness, and the laminate exhibits very high void content levels after oven vacuum bag processing. In the laminates with edges open to vacuum, air diffusion through a single layer and flow through the permeable interlayer lead to essentially void-free laminates. The findings show the importance of the interlayer permeability and edge conditions on the void reduction, and demonstrate that low void content can be achieved in thick section thermoplastic composite laminates via cost effective oven vacuum bag processing. </jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • composite
  • permeability
  • void
  • thermoplastic
  • ketone