Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gautam, Rk

  • Google
  • 1
  • 4
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Strengthening mechanisms of (Al<sub>3</sub>Zr<sub>mp</sub> + ZrB<sub>2np</sub>)/AA5052 hybrid composites29citations

Places of action

Chart of shared publication
Kumar, N.
1 / 15 shared
Mohan, S.
1 / 7 shared
Gautam, G.
1 / 1 shared
Mohan, Anita
1 / 7 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Kumar, N.
  • Mohan, S.
  • Gautam, G.
  • Mohan, Anita
OrganizationsLocationPeople

article

Strengthening mechanisms of (Al<sub>3</sub>Zr<sub>mp</sub> + ZrB<sub>2np</sub>)/AA5052 hybrid composites

  • Kumar, N.
  • Mohan, S.
  • Gautam, G.
  • Mohan, Anita
  • Gautam, Rk
Abstract

<jats:p> To establish the correlation between grain size, dislocations, dispersed particles (size and vol.%) along with their solid solution strengthening effects in alloy and combined effect of all on the strengthening of advanced composite materials (Al<jats:sub>3</jats:sub>Zr<jats:sub>mp</jats:sub> + ZrB<jats:sub>2np</jats:sub>)/AA5052 hybrid composites have been selected for the investigation. (Al<jats:sub>3</jats:sub>Zr<jats:sub>mp</jats:sub> + ZrB<jats:sub>2np</jats:sub>)/AA5052 hybrid composites have been synthesized by the direct melt reaction of AA5052 alloy and inorganic salts (K<jats:sub>2</jats:sub>ZrF<jats:sub>6</jats:sub> and KBF<jats:sub>4</jats:sub>). These composites have been characterised by X-ray diffractometer, optical microscopy, scanning-electron microscopy with energy-dispersive spectroscopy, transmission-electron microscopy, tensile and hardness test. Results indicate the successful formation of second phase reinforcement particles namely Al<jats:sub>3</jats:sub>Zr and ZrB<jats:sub>2</jats:sub> in the AA5052 alloy matrix. Al<jats:sub>3</jats:sub>Zr particles exhibit rectangular and polyhedron morphology within an average of micron size while ZrB<jats:sub>2</jats:sub> show hexagonal and rectangular within an average of nano size. Grain refinement of Al-rich phase observed in the composites, increases with increasing vol.% of reinforcement particles. TEM observation shows the presence of dislocations in the composite matrix which help to improve the strength parameters. Tensile results show the improvement in strength parameters which improve with the increasing amount of particles whereas percentage elongation also improves up to certain vol.% of particles and beyond that decrease. However, bulk hardness shows an increasing trend continuously with vol.% of particles. The strengthening mechanisms, namely dislocation, Orowan, grain-refined and solid solution are quantified for the hybrid (Al<jats:sub>3</jats:sub>Zr<jats:sub>mp</jats:sub> + ZrB<jats:sub>2np</jats:sub>)/AA5052 composites and the total of above are in agreement with experimental results. Solid-solution and Orowan are the predominant strengthening mechanisms in the composites. </jats:p>

Topics
  • morphology
  • grain
  • grain size
  • melt
  • strength
  • composite
  • hardness
  • transmission electron microscopy
  • dislocation
  • optical microscopy
  • spectroscopy