Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paluch, Bernard

  • Google
  • 1
  • 2
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Characterization of free edge effects: influence of mechanical properties, microstructure and structure effects19citations

Places of action

Chart of shared publication
Lecomte-Grosbras, Pauline
1 / 5 shared
Brieu, Mathias
1 / 21 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Lecomte-Grosbras, Pauline
  • Brieu, Mathias
OrganizationsLocationPeople

article

Characterization of free edge effects: influence of mechanical properties, microstructure and structure effects

  • Lecomte-Grosbras, Pauline
  • Paluch, Bernard
  • Brieu, Mathias
Abstract

<jats:p> The elastic property mismatch between plies with different orientations induces stress concentrations near free edges. This free edge effect can cause early delamination of composite structures. Laminates with 15° and –15° plies are studied experimentally to highlight the free-edge effect and the induced micromechanism damage. Full field measurements under tensile loading are performed at macroscopic and mesoscopic scales on edges of the sample. Results show displacement gradients and strain concentrations near interlaminar interfaces. Residual displacement gradients are measured after unloading, which highlights local damage at interlaminar interfaces. Observations at the microscopic scale show that cracks appear at fibre/matrix interfaces and propagate between adjacent fibres along interlaminar interfaces. A comparison of the results obtained on different composites highlights the influence of mechanical properties and material microstructure on edge effects. The study of samples with dropped plies highlights the influence of the combination of both geometric and material singularities on edge effects. </jats:p>

Topics
  • microstructure
  • crack
  • composite