People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tserpes, Konstantinos
University of Patras
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2021Adhesive Bonding of Aircraft Composite Structurescitations
- 2021Towards a Circular Economy in the Aviation Sector Using Eco-Composites for Interior and Secondary Structures. Results and Recommendations from the EU/China Project ECO-COMPASScitations
- 2020Influence of Embedding Fiber Optical Sensors in CFRP Film Adhesive Joints on Bond Strengthcitations
- 2020Electrical Conductivity and Electromagnetic Shielding Effectiveness of Bio-Compositescitations
- 2020Influence of embedding fiber optical sensors in CFRP film adhesive joints on bond strengthcitations
- 2020Modelling and Experimental Validation of the Porosity Effect on the Behaviour of Nano-Crystalline Materialscitations
- 2019Numerical Computation of Material Properties of Nanocrystalline Materials Utilizing Three-Dimensional Voronoi Modelscitations
- 2018Prediction of mechanical properties of porous CFRP specimens by ANNs and X-ray CT datacitations
- 2016Evaluation of porosity effects on the mechanical properties of carbon fiber-reinforced plastic unidirectional laminates by X-ray computed tomography and mechanical testingcitations
- 2014Progressive damage modelling of 3D fully interlaced woven composite materialscitations
- 2011On the mechanical performance of noncrimp fabric H-shaped adhesively bonded jointscitations
- 2009Effect of Water Absorption on Strength of the Aeronautical Composite Material Fiberdux HTA/6376citations
Places of action
Organizations | Location | People |
---|
article
On the mechanical performance of noncrimp fabric H-shaped adhesively bonded joints
Abstract
<jats:p> Adhesive bonding is contemplated as an alternative method to mechanical fastening for joining composite aerostructures. Ongoing research in this area is focused on the development of new bonding techniques and joining elements. In this article, the mechanical performance of the novel noncrimp fabric (NCF) H-shaped adhesively bonded joints subjected to tension, shear and four-point bending loading conditions was investigated by both experimental tests and numerical modeling. The H profiles were manufactured by employing the preforming and injection molding methods, while bonding of the assembled parts was carried out using a novel stepwise procedure which leads to a high bonding quality. Investigation was conducted by means of mechanical testing and a mesomechanical model based on the FE method and the progressive damage modeling approach. In the model, both adhesive failure (debonding) and failure of the NCF material is considered. In the tension and shear load cases, the joint failed due to extensive debonding attributed to adhesive shearing, while in the four-point bending load case, due to failure of the H element. In all three load cases, the experimental and numerical results compare well thus, providing establishment of the numerical model in simulating the performance of textile structural parts. Finally, the effort presented herein is rated as successful since new adhesive bonded joints of high mechanical performance are proposed. </jats:p>