Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Valea, A.

  • Google
  • 1
  • 3
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Off-axis flexure test11citations

Places of action

Chart of shared publication
Mondragon, I.
1 / 22 shared
Rojo, Piedad Felisinda Gañán
1 / 34 shared
Mujika, F.
1 / 12 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Mondragon, I.
  • Rojo, Piedad Felisinda Gañán
  • Mujika, F.
OrganizationsLocationPeople

article

Off-axis flexure test

  • Mondragon, I.
  • Valea, A.
  • Rojo, Piedad Felisinda Gañán
  • Mujika, F.
Abstract

<p>Off-axis three-point flexure test for unidirectional composites is proposed as a new method for obtaining in-plane shear modulus and in-plane shear strength. The method of determination of the in-plane shear modulus G <sub>LT</sub> has been explained in a previous work where the displacement field of an off-axis flexure test was analyzed. In the present work, besides summarizing the calculation equations of G<sub>LT</sub>, the condition of small displacements is analyzed. Otherwise, an error analysis is carried out in order to study the influence of the calculated value of G<sub>LT</sub> on the other elastic parameters. Normal and shear stresses in the fiber-matrix interface change from point to point in the specimen depending on the fiber orientation angle and specimen geometry. A critical point of failure that depends on the fiber orientation angle is determined and optimum conditions for obtaining in-plane shear strength are discussed. Experiments for different fiber orientations and geometric conditions have been carried out for IM7/8552 epoxy matrix based carbon fiber reinforced unidirectional composite material.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • experiment
  • strength
  • composite