Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Haldin, Charlotte

  • Google
  • 1
  • 3
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006A New method for measuring free drug concentration12citations

Places of action

Chart of shared publication
Koskelainen, Ari
1 / 1 shared
Tenhu, Heikki
1 / 35 shared
Nymark, Soile
1 / 1 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Koskelainen, Ari
  • Tenhu, Heikki
  • Nymark, Soile
OrganizationsLocationPeople

article

A New method for measuring free drug concentration

  • Koskelainen, Ari
  • Tenhu, Heikki
  • Nymark, Soile
  • Haldin, Charlotte
Abstract

PURPOSE: To develop a method of using isolated rat retina as a biosensor in experiments on controlled drug release for measuring the resultant concentration of free model drug in living tissue and for testing the biocompatibility of the polymers and polymeric nanostructures used as drug carriers.METHODS: The method is based on the monotonic dependence of the photoresponse kinetics of retinal rods on the concentration of the membrane-permeable phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX).Changes in the time to peak (tp) of linear-range rod photoresponses were followed by transretinal ERG mass potential recordings in the aspartate-treated, dark-adapted rat retina.The dependence of tp on [IBMX] was measured, and the calibration curve thus obtained was used to determine the amount of IBMX released from polymeric structures.The biocompatibility of the carrier was first assessed by the degree to which rods retained stable function in the presence of the polymer or monomers alone.RESULTS: The dependence of tp on [IBMX] was well-described by a second-order polynomial.After each change of [IBMX], a new equilibrium state was reached within 6 to 9 minutes, depending on temperature.The amounts of IBMX released from biocompatible polymeric structures were measurable with good accuracy in the range 10 to 300 microM.CONCLUSIONS: This method enables accurate concentration determinations of the model drug IBMX in retinal tissue in drug-release experiments.The concentration dependence of the photoresponse kinetics has to be calibrated for each retina and temperature.The same preparation can be used for rapid testing of possible bioincompatibility of various molecules.[on SciFinder (R)]

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • biocompatibility