Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Smolik, Waldemar T.

  • Google
  • 2
  • 12
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Microsensor for cell force measurementcitations
  • 2008A new forward-problem solver based on a capacitor-mesh model for electrical capacitance tomography18citations

Places of action

Chart of shared publication
Danz, Norbert
1 / 1 shared
Kurzydłowski, Krzysztof J.
1 / 9 shared
Forester, Erik
1 / 1 shared
Święszkowski, Wojciech
1 / 53 shared
Kaiser, Jean-Pierre
1 / 2 shared
Bruinink, Arie
1 / 4 shared
Szabatin, Roman
1 / 1 shared
Olszewski, T.
1 / 2 shared
Yang, Wuquiang Q.
1 / 5 shared
Radomski, Dariusz S.
1 / 1 shared
Yang, M.
1 / 15 shared
Mirkowski, Jacek
1 / 1 shared
Chart of publication period
2010
2008

Co-Authors (by relevance)

  • Danz, Norbert
  • Kurzydłowski, Krzysztof J.
  • Forester, Erik
  • Święszkowski, Wojciech
  • Kaiser, Jean-Pierre
  • Bruinink, Arie
  • Szabatin, Roman
  • Olszewski, T.
  • Yang, Wuquiang Q.
  • Radomski, Dariusz S.
  • Yang, M.
  • Mirkowski, Jacek
OrganizationsLocationPeople

article

Microsensor for cell force measurement

  • Danz, Norbert
  • Kurzydłowski, Krzysztof J.
  • Forester, Erik
  • Smolik, Waldemar T.
  • Święszkowski, Wojciech
  • Kaiser, Jean-Pierre
  • Bruinink, Arie
Abstract

Cell elasticity, motility and migration are very important for understanding various biological processes. Currently, monitoring cellular traction forces is desired as new marker to monitor cell functionality. We developed a sensor system for cell force measurement based upon a polymer microchip covered with a micropillar matrix. The spring constant is chosen to enable pillar bending by cellular forces. The microchip is read out optically. Besides a transmission image to analyze pillar bending, two different fluorescence images of dye markers can be taken sequentially. Matrix with the cells is illuminated by spatially homogenized LED radiation. The focal position during long term experiments can be maintained by means of a piezo stage in order to obtain highly resolved images from the CCD imager. Sophisticated software controls the optical system and performs image registration. First, one transmission (red) as well as two fluorescence images (blue \& green) are taken using appropriate CCD gain and integration times. Fluorescence information yields those pillar positions that are at least covered by a cell. The transmission image is used to calculate the magnitude and direction of pillars deflection. Therefore, detection of single pillar position and its deviation from a hexagonal grid is analyzed automatically, enabling a mapping of traction forces. The system containing transducer polymer chip, optics, and dedicated software analysis is a complete imaging system for image registration, single cell visualization and cellular force measurement. First results of cellular force measurements obtained are presented.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • elasticity