Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kashan, Jenan S.

  • Google
  • 1
  • 3
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of Multi-Walled Carbon Nanotube on the Microstructure, Physical and Mechanical Properties of ZrO<sub>2</sub>–CaO/Poly(methyl methacrylate) Biocomposite for Bone Reconstruction Application8citations

Places of action

Chart of shared publication
Yahia, M. E.
1 / 1 shared
Fouad, Hassan
1 / 9 shared
Al-Allaq, Ali A.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Yahia, M. E.
  • Fouad, Hassan
  • Al-Allaq, Ali A.
OrganizationsLocationPeople

article

Effect of Multi-Walled Carbon Nanotube on the Microstructure, Physical and Mechanical Properties of ZrO<sub>2</sub>–CaO/Poly(methyl methacrylate) Biocomposite for Bone Reconstruction Application

  • Yahia, M. E.
  • Fouad, Hassan
  • Kashan, Jenan S.
  • Al-Allaq, Ali A.
Abstract

<jats:p>After bone implant, short-term complications can lead to a complicated approach to recovery, requiring surgical correction associated with additive risks, such as deep infection and double fracture. The development of synthesized biomaterials for bone replacement or repair, as wellas the prevalence of osteoporosis, bone fracture, and bone cancer, is therefore of significant importance. This work aims to demonstrate the effect of adding multi-walled carbon nanotube (MWCNTs) to the (PMMA/ZrO<jats:sub>2</jats:sub>–CaO) bio-composites to fabricate a new hybrid biocompositesystem for bone recovery and replacement applications. Four groups of composite samples were produced PMMA/(0, 5, 10, 15, 20)% weights of ZrO<jats:sub>2</jats:sub>–CaO and adding (0, .1, 0.25, 0.5, 1)% weights of (MWCNTs) to each group. X-ray powder diffraction (XRD), surface topography by fieldemission scanning electron microscopy (FE-SEM), and fracture strength tests were performed to evaluate the samples’ properties. A number of the most significant characteristics obtained through XRD exhibited a high degree of homogeneous mixing of the composites. In the examination, smoothpeaks were obtained and the homogeneous distribution resulted in phase stability. A FE-SEM analysis demonstrated the presence of fibrous structures following the addition of MWCNTs, indicating that this approach would promote adhesion and healing of the tissue, as well as a fibrous arrangementthat mimics that of natural bone. The results also showed improvements in mechanical properties by approximately 57%, 38%, 45%, and 6.5% due to the addition of MWCNTs compared to the version sample. Based on the experimental results, the study highlights the potential of these composites inbone reconstruction applications.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • Carbon
  • phase
  • x-ray diffraction
  • nanotube
  • strength
  • composite
  • biomaterials
  • phase stability
  • field-emission scanning electron microscopy