Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luna, E.

  • Google
  • 7
  • 29
  • 166

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2020Increasing Optical Efficiency in the Telecommunication Bands of Strain-Engineered Ga (As,Bi) Alloys10citations
  • 2020Increasing optical efficiency in the telecommunication bands of strain-engineered Ga(As, Bi) alloys10citations
  • 2017The role of epitaxial strain on the spontaneous formation of Bi-rich nanostructures in Ga(As,Bi) epilayers and quantum wells5citations
  • 2016Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-xBix/GaAs quantum wells30citations
  • 2015Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs1-xBix epilayers28citations
  • 2015Te-doping of self-catalyzed GaAs nanowires27citations
  • 2013Variation of lattice constant and cluster formation in GaAsBi56citations

Places of action

Chart of shared publication
Tisbi, E.
2 / 2 shared
Zallo, E.
2 / 6 shared
Vondracek, M.
2 / 2 shared
Magri, R.
2 / 4 shared
Arciprete, F.
2 / 10 shared
Colonna, S.
2 / 8 shared
Cecchi, S.
2 / 14 shared
Honolka, J.
2 / 5 shared
Prosposito, P.
2 / 4 shared
Zaganelli, A.
2 / 2 shared
Francini, R.
2 / 6 shared
Calarco, R.
2 / 16 shared
Placidi, E.
2 / 15 shared
Wu, M.
4 / 22 shared
Hilska, Joonas
1 / 4 shared
Puustinen, J.
4 / 13 shared
Trampert, A.
3 / 17 shared
Guina, Mircea
4 / 36 shared
Hanke, M.
1 / 4 shared
Salminen, Turkka
1 / 31 shared
Talmila, Soile
1 / 2 shared
Hakkarainen, Teemu Valtteri
1 / 9 shared
Koskinen, R.
1 / 1 shared
Honkanen, Mari Hetti
1 / 59 shared
Sajavaara, Timo
1 / 55 shared
Guina, M.
1 / 4 shared
Laitinen, Mikko
1 / 16 shared
Schramm, A.
1 / 5 shared
Laukkanen, Pia
1 / 1 shared
Chart of publication period
2020
2017
2016
2015
2013

Co-Authors (by relevance)

  • Tisbi, E.
  • Zallo, E.
  • Vondracek, M.
  • Magri, R.
  • Arciprete, F.
  • Colonna, S.
  • Cecchi, S.
  • Honolka, J.
  • Prosposito, P.
  • Zaganelli, A.
  • Francini, R.
  • Calarco, R.
  • Placidi, E.
  • Wu, M.
  • Hilska, Joonas
  • Puustinen, J.
  • Trampert, A.
  • Guina, Mircea
  • Hanke, M.
  • Salminen, Turkka
  • Talmila, Soile
  • Hakkarainen, Teemu Valtteri
  • Koskinen, R.
  • Honkanen, Mari Hetti
  • Sajavaara, Timo
  • Guina, M.
  • Laitinen, Mikko
  • Schramm, A.
  • Laukkanen, Pia
OrganizationsLocationPeople

article

The role of epitaxial strain on the spontaneous formation of Bi-rich nanostructures in Ga(As,Bi) epilayers and quantum wells

  • Wu, M.
  • Luna, E.
  • Hilska, Joonas
  • Puustinen, J.
  • Trampert, A.
  • Guina, Mircea
Abstract

<p>In this work, we explore the role of epitaxial strain on the spontaneous development of Bi-rich nanostructures within Ga(As,Bi) epilayers and Ga(As,Bi)/GaAs quantum wells (QWs) grown by molecular beam epitaxy. We observe the spontaneous formation of ordered arrays of uniform nanometer-sized Bi-rich structures in Ga(As,Bi)/GaAs QWs and of columnar-like Bi-rich regions in Ga(As,Bi) epilayers, respectively. A correlation between the microstructure and the growth conditions is established. In particular, we find that the As/Ga flux ratio has a significant impact and that epilayers grown at high temperature (315 °C) are homogeneous. The formation mechanism of such microstructure is discussed in terms of the epitaxial strain effect versus the composition effect (i.e., the phase separation tendency of the alloy). We demonstrate that the accumulation of epitaxial strain due to the lattice mismatch can not explain our experimental observations. On the other hand, we find that the spontaneous formation of the nanostructures is the consequence of a surface-directed decomposition process at the growing front due to the inherent tendency of the alloy to phase separate. Surface processes (including Bi surface segregation) are decisive in determining the final morphology.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • morphology
  • surface
  • phase
  • decomposition