Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Toku, Yuhki

  • Google
  • 2
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study6citations
  • 2024Titanium-coated high-density Fe<sub>2</sub>O<sub>3</sub> single crystal nanowire array for solar water splitting1citations

Places of action

Chart of shared publication
Ju, Yang
2 / 2 shared
Uchida, Motoki
1 / 1 shared
Kimura, Yasuhiro
2 / 2 shared
Mahmud, Md Sultan
1 / 2 shared
Gu, Shaojie
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ju, Yang
  • Uchida, Motoki
  • Kimura, Yasuhiro
  • Mahmud, Md Sultan
  • Gu, Shaojie
OrganizationsLocationPeople

article

Titanium-coated high-density Fe<sub>2</sub>O<sub>3</sub> single crystal nanowire array for solar water splitting

  • Toku, Yuhki
  • Ju, Yang
  • Kimura, Yasuhiro
  • Mahmud, Md Sultan
  • Gu, Shaojie
Abstract

<jats:p>Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> holds promising <jats:italic>n</jats:italic>-type semiconductor material in the field of solar water splitting due to its excellent photocatalytic properties. However, the photoelectrochemical performance of Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is limited by its inherent properties suchas poor conductivity, and charge separation efficiency owing to its recombination rate. Therefore, researchers are more focused on nanostructuring, doping, and surface coating to overcome these issues of Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. In this study, we have investigated a low-cost way to fabricatea Ti coating layer on a high-density Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> single-crystal nanowire array for solar water splitting. Firstly, we have prepared a high-density single-crystal Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nanowire array at lower temperatures by a new approach stress-induced atomic diffusionmethod. Thereafter, the prepared nanowire array was coated by Ti film using RF sputtering. The optimal film thickness of 13 nm titanium coatings layer into Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> single crystal nanowire array exhibited a high photocurrent density of 1.36 mA/cm<jats:sup>2</jats:sup> at 1.23 V versusRHE and solar to hydrogen conversion efficiency (STH) of 1.67%, which could be resulting from adjusted optoelectronic properties of the nanowires.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • single crystal
  • semiconductor
  • Hydrogen
  • titanium