Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alshahrani, S. Melhi

  • Google
  • 1
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Quantized molecular intercalations of Rhodamine 6G laser dye onto polymethylmethacrylate host exciplex2citations

Places of action

Chart of shared publication
Al-Shamiri, Hamdan A. S.
1 / 1 shared
Al-Mokadem, A. Z.
1 / 1 shared
Awwad, Nasser S.
1 / 28 shared
Alosaimi, Eid. H.
1 / 1 shared
Elhouichet, Habib
1 / 8 shared
El-Gammal, B.
1 / 1 shared
Ibrahim, G. M.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Al-Shamiri, Hamdan A. S.
  • Al-Mokadem, A. Z.
  • Awwad, Nasser S.
  • Alosaimi, Eid. H.
  • Elhouichet, Habib
  • El-Gammal, B.
  • Ibrahim, G. M.
OrganizationsLocationPeople

article

Quantized molecular intercalations of Rhodamine 6G laser dye onto polymethylmethacrylate host exciplex

  • Al-Shamiri, Hamdan A. S.
  • Al-Mokadem, A. Z.
  • Awwad, Nasser S.
  • Alosaimi, Eid. H.
  • Alshahrani, S. Melhi
  • Elhouichet, Habib
  • El-Gammal, B.
  • Ibrahim, G. M.
Abstract

<jats:p>Polymethylmethacrylate (PMMA) and Rhodamine 6G (R6G), were used to achieve an electronically excited R6G/PMMA complex of definite stoichiometry as an active laser exciplex, pumped by different laser sources. This paper is the first that is capable of interpretation of the interactionsof the reactants to form the exciplex on the molecular level using DFT. The system was prepared by thermochemical polymerization, and structurally identified using FTIR, XRD and SEM in conjunction with DSC. In low-to moderate-loading of R6G, FTIR and XRD studies indicated a good interactionbetween PMMA and R6G to give poor-or semi-crystalline structures. Higher dye loadings were achieved for the synthesized exciplex; loading of PMMA with 0.25 Wt-% R6G decreased the glass transition temperature from 98.74 °C to 70.08 °C. However, increasing the loading with R6G to 5 Wt-%and 20 Wt-% increased the Tg values to 86.26 and 91.90 °C, respectively. MD simulations were conducted; the electronic mobility within the system was related to different quantum parameters, <jats:italic>E<jats:sub>HOMO</jats:sub>, E<jats:sub>LUMO</jats:sub>, η, μ</jats:italic> and <jats:italic>ω</jats:italic> were about -7.671 eV,-5.241 eV, 1.215 eV, -6.456 eV and 17.1522 eV, respectively. DFT calculations indicated that R6G/PMMA has a characteristic lasing stability, so that the lasing lifetimes about 8000 pulses and efficiencies about 21% were obtained.</jats:p>

Topics
  • impedance spectroscopy
  • mobility
  • scanning electron microscopy
  • x-ray diffraction
  • simulation
  • glass
  • glass
  • molecular dynamics
  • thermogravimetry
  • glass transition temperature
  • density functional theory
  • differential scanning calorimetry