Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schrekker, Henri S.

  • Google
  • 1
  • 6
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Functionalized-carbon nanotubes with physisorbed ionic liquid as filler for epoxy nanocomposites14citations

Places of action

Chart of shared publication
Corat, Evaldo J.
1 / 1 shared
Amico, Sandro C.
1 / 32 shared
Kleinschmidt, Ana C.
1 / 1 shared
Almeida Júnior, Jhs
1 / 38 shared
Donato, Ricardo K.
1 / 2 shared
Marques, Vagner C.
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Corat, Evaldo J.
  • Amico, Sandro C.
  • Kleinschmidt, Ana C.
  • Almeida Júnior, Jhs
  • Donato, Ricardo K.
  • Marques, Vagner C.
OrganizationsLocationPeople

article

Functionalized-carbon nanotubes with physisorbed ionic liquid as filler for epoxy nanocomposites

  • Corat, Evaldo J.
  • Amico, Sandro C.
  • Kleinschmidt, Ana C.
  • Almeida Júnior, Jhs
  • Donato, Ricardo K.
  • Schrekker, Henri S.
  • Marques, Vagner C.
Abstract

<p>This research aimed to study the effect of different procedures for carbon nanotube (CNT) dispersion and functionalization in an epoxy matrix, following their effects on the mechanical and dynamic mechanical properties. In first instance, ionic liquid (IL) 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMImNTf<sub>2</sub>) was identified as the best dispersant for unmodified CNT dispersion, compared to acetone and sodium dodecyl sulfate (SDS). Further optimization of the nanocomposite formulation was pursued through the dispersion of ten different chemically treated types of functionalized-CNT, plus an alternative route was performed by using the IL 1-n-butyl-3- methylimidazolium chloride-BMImCl. The aim was to improve the nanofiller's functionalization, since this is directly related to the interaction and dispersion of nanoparticles into the polymer matrix. The association of IL BMImNTf<sub>2</sub> dispersant with oxidized CNT provided high-performance epoxy/CNT nanocomposites, when the oxidation was promoted by a unique treatment, especially sulfuric acid or plasma application. It was sought to maximize most of the nanocomposites properties produced by combining the effect of oxidation with the application of ionic liquids, which are substances with high stabilization character. Compared to the neat resin, the nanocomposite treated via acid &gt; O<sub>2</sub> plasma&gt; amination was 60% harder, and its T<sub>g</sub> increased from 104°C to 110°C. In contrast, treatments with surfactant and acetone weakened the CNT, resulting in a T<sub>g</sub> between 96 and 98°C for nanocomposites.</p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • polymer
  • Carbon
  • nanotube
  • Sodium
  • resin
  • functionalization
  • surfactant