Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nedkov, Ivan

  • Google
  • 1
  • 4
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Microwave Properties of Polymer Composites Containing Combinations of Micro- and Nano-Sized Magnetic Fillers7citations

Places of action

Chart of shared publication
Koutzarova, Tatyana
1 / 6 shared
Kolev, Svetoslav
1 / 3 shared
Ghelev, Chavdar
1 / 2 shared
Yanev, Andrey
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Koutzarova, Tatyana
  • Kolev, Svetoslav
  • Ghelev, Chavdar
  • Yanev, Andrey
OrganizationsLocationPeople

article

Microwave Properties of Polymer Composites Containing Combinations of Micro- and Nano-Sized Magnetic Fillers

  • Koutzarova, Tatyana
  • Kolev, Svetoslav
  • Ghelev, Chavdar
  • Yanev, Andrey
  • Nedkov, Ivan
Abstract

<jats:p>We investigated the microwave absorbing properties of composite bulk samples with nanostructured and micron-sized fillers. As magnetic fillers we used magnetite powder (Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> with low magnetocrystalline anisotropy) and strontium hexaferrite (SrFe<jats:sub>12</jats:sub>O<jats:sub>19</jats:sub>with high magnetocrystalline anisotropy). The dielectric matrix consisted of silicone rubber. The average particle size was 30 nm for the magnetite powder and 6 <jats:italic>μ</jats:italic>m for the strontium hexaferrite powder. The micron-sized SrFe<jats:sub>12</jats:sub>O<jats:sub>19</jats:sub> powder was prepared using a solid-statereaction. We investigated the influence of the filler concentration and the filler ratio (Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/SrFe<jats:sub>12</jats:sub>O<jats:sub>19</jats:sub>) in the polymer matrix on the microwave absorption in a large frequency range (1 ÷ 18 GHz). The results obtained showed that the highlyanisotropic particles become centers of clusterification and the small magnetite particles form magnetic balls with different diameter depending on the concentration. The effect of adding micron-sized SrFe<jats:sub>12</jats:sub>O<jats:sub>19</jats:sub> to the nanosized Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> filler in compositesabsorbing structures has to do with the ferromagnetic resonance (FMR) shifting to the higher frequencies due to the changes in the ferrite filler's properties induced by the presence of a magnetic material with high magnetocrystalline anisotropy. The two-component filler possesses new valuesof the saturation magnetization and of the anisotropy constant, differing from those of both SrFe<jats:sub>12</jats:sub>O<jats:sub>19</jats:sub> and Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>, which leads to a rise in the effective anisotropy field. The results demonstrate the possibility to vary the composite's absorptioncharacteristics in a controlled manner by way of introducing a second magnetic material.</jats:p>

Topics
  • Strontium
  • composite
  • rubber
  • magnetization
  • saturation magnetization