People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alegret, Salvador
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2011Magneto immunoassays for plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticlescitations
- 2009Electrochemical immunosensor for the diagnosis of celiac diseasecitations
- 2009Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safetycitations
- 2009Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensorscitations
- 2007Electrochemical magneto immunosensing of antibiotic residues in milkcitations
- 2007Bioaffinity platforms based on carbon-polymer biocomposites for electrochemical biosensingcitations
- 2007Electrochemical biosensing of pesticide residues based on affinity biocomposite platformscitations
- 2007In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogenscitations
- 2006Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devicescitations
- 2006Impedimetric genosensors for the detection of DNA hybridizationcitations
- 2006Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodescitations
- 2006Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodescitations
- 2006Electrochemical magnetoimmunosensing strategy for the detection of pesticides residuescitations
- 2006Extractant assisted synthesis of polymer stabilized platinum and palladium metal nanoparticles for sensor applicationscitations
- 2006Electrochemical biosensing based on universal affinity biocomposite platformscitations
- 2005Integration of a glucose biosensor based on an epoxy-graphite- TTF·TCNQ-GOD biocomposite into a FIA systemcitations
- 2005Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracercitations
- 2005Electrochemical genosensing based on rigid carbon composites. A reviewcitations
- 2005Glucose biosensor based on carbon nanotube epoxy compositescitations
- 2005Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursorcitations
- 2004Renewable Protein A modified graphite-epoxy composite for electrochemical immunosensingcitations
- 2004Rigid carbon composites: A new transducing material for label-free electrochemical genosensingcitations
- 2003Graphite-epoxy platforms for electrochemical genosensingcitations
- 2003Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrodecitations
- 2003Graphite-epoxy composites as a new transducing material for electrochemical genosensingcitations
Places of action
Organizations | Location | People |
---|
article
Glucose biosensor based on carbon nanotube epoxy composites
Abstract
A novel glucose biosensor based on a rigid and renewable carbon nanotube (CNT) based biocomposite is reported. The biosensor was based on the immobilization of glucose oxidase (GOx) within the CNT epoxy-composite matrix prepared by dispersion of multi-wall CNT inside the epoxy resin. The use of CNT, as the conductive part of the composite, ensures better incorporation of enzyme into the epoxy matrix and faster electron transfer rates between the enzyme and the transducer. Experimental results show that the CNT epoxy composite biosensor (GOx-CNTEC) offers an excellent sensitivity, reliable calibration profile, and stable electrochemical properties together with significantly lower detection potential (+0.55 V) than GOx-graphite epoxy composites (+0.90 V; difference ΔE = 0.35 V). The results obtained favorably compare to those of a glucose biosensor based on a graphite epoxy composite (GOx-GEC). Copyright © 2005 American Scientific Publishers All rights reserved.