Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chaudhuri, S.

  • Google
  • 6
  • 36
  • 54

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
  • 2023Quantitative analysis of the correlation between geometric parameters of pits and stress concentration factors for a plate subject to uniaxial tensile stress9citations
  • 2021Half metallicity in Cr substituted Fe 2 TiSn13citations
  • 2015Templated growth of II-VI semiconductor optical fiber devices and steps towards infrared fiber laserscitations
  • 2014Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate29citations
  • 2005Photoluminescence and Raman study of CdS-Al 2O 3 nanocomposite films prepared by sol-gel techniques3citations

Places of action

Chart of shared publication
Elahi, S. A.
1 / 1 shared
Waele, W. De
1 / 7 shared
Balbín Molina, José Antonio
1 / 4 shared
Mehri Sofiani, F.
1 / 1 shared
Larrosa, N. O.
1 / 6 shared
Elahi, Seyed Ahmad
1 / 19 shared
Hectors, Kris
1 / 8 shared
Mehri Sofiani, Farid
1 / 21 shared
Waele, Wim De
1 / 30 shared
Srihari, V.
1 / 2 shared
Karaman, I.
1 / 30 shared
Bhobe, P. A.
1 / 2 shared
Welter, E.
1 / 11 shared
Salas, D.
1 / 4 shared
Fitzgibbons, T. C.
1 / 1 shared
Krishnamurthi, M.
1 / 3 shared
Baril, N. F.
1 / 8 shared
Gopalan, V.
1 / 14 shared
Healy, N.
1 / 16 shared
Peacock, Anna C.
1 / 47 shared
Sparks, J. R.
1 / 6 shared
He, R.
1 / 7 shared
Sazio, Pier-John
1 / 56 shared
Badding, J. V.
1 / 22 shared
Bäcker, M.
1 / 4 shared
Wagner, Patrick
1 / 26 shared
Zander, W.
1 / 6 shared
Huck, Christina
1 / 5 shared
Begoyan, V. K.
1 / 1 shared
Schubert, J.
1 / 36 shared
Poghossian, Arshak
1 / 9 shared
Schöning, M. J.
1 / 7 shared
Buniatyan, V. V.
1 / 1 shared
Ganguly, Abhijit
1 / 8 shared
Chakrabarti, Supriya
1 / 2 shared
Panda, S. K.
1 / 8 shared
Chart of publication period
2024
2023
2021
2015
2014
2005

Co-Authors (by relevance)

  • Elahi, S. A.
  • Waele, W. De
  • Balbín Molina, José Antonio
  • Mehri Sofiani, F.
  • Larrosa, N. O.
  • Elahi, Seyed Ahmad
  • Hectors, Kris
  • Mehri Sofiani, Farid
  • Waele, Wim De
  • Srihari, V.
  • Karaman, I.
  • Bhobe, P. A.
  • Welter, E.
  • Salas, D.
  • Fitzgibbons, T. C.
  • Krishnamurthi, M.
  • Baril, N. F.
  • Gopalan, V.
  • Healy, N.
  • Peacock, Anna C.
  • Sparks, J. R.
  • He, R.
  • Sazio, Pier-John
  • Badding, J. V.
  • Bäcker, M.
  • Wagner, Patrick
  • Zander, W.
  • Huck, Christina
  • Begoyan, V. K.
  • Schubert, J.
  • Poghossian, Arshak
  • Schöning, M. J.
  • Buniatyan, V. V.
  • Ganguly, Abhijit
  • Chakrabarti, Supriya
  • Panda, S. K.
OrganizationsLocationPeople

article

Photoluminescence and Raman study of CdS-Al 2O 3 nanocomposite films prepared by sol-gel techniques

  • Ganguly, Abhijit
  • Chaudhuri, S.
  • Chakrabarti, Supriya
  • Panda, S. K.
Abstract

<p>The optical and microstructural properties of CdS-Al <sub>2</sub>O <sub>3</sub> nanocomposite (CdS-Al <sub>2</sub>O <sub>3</sub> = 20:80 to 50:50) thin films synthesized by sol-gel techniques were studied. Optical transmission spectra indicated a marked blue shift of the absorption edge due to quantum confinement. Band gaps of CdS-Al <sub>2</sub>O <sub>3</sub> nanocomposites were found to vary in the range 3.69-2.61 eV. The sizes of the nanocrystals, estimated from the blue shift (0.2-1.2 eV) of the absorption edges and transmission electron microscopy, were found to vary in the range 2.8-7.0 nm. X-ray diffraction studies showed reflections from (111), (200), (220), and (311) planes of CdS in the cubic phase. Microstructural characterization by high-resolution transmission electron microscope (HRTEM) indicated well crystallinity of the nanoparticles and lattice fringes supported the cubic phase of CdS. Raman spectroscopy was carried out for CdS-Al <sub>2</sub>O <sub>3</sub> nanocomposites, which indicated a prominent peak at ∼299 cm <sup>-1</sup>. Significant changes in the peak position and intensity of the Raman peak were observed with varying the annealing temperature (373-573 K). Photoluminescence measurements indicated a prominent broad peak at ∼1.81 eV due to the surface defects in the CdS nanocrystallites. The present study revealed Al <sub>2</sub>O <sub>3</sub> to be a good capping material for CdS nanoparticles.</p>

Topics
  • nanoparticle
  • nanocomposite
  • surface
  • photoluminescence
  • phase
  • x-ray diffraction
  • thin film
  • transmission electron microscopy
  • defect
  • annealing
  • Raman spectroscopy
  • crystallinity