People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tomas, H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Studycitations
- 2023Carbon dots and dendrimers nanohybrids: from synthesis to applicationscitations
- 2022New insights into ruthenium(ii) metallodendrimers as anticancer drug nanocarriers: from synthesis to preclinic behaviourcitations
- 2021Use of Half-Generation PAMAM Dendrimers (G0.5-G3.5) with Carboxylate End-Groups to Improve the DACHPtCl(2) and 5-FU Efficacy as Anticancer Drugscitations
- 2021Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulosecitations
- 2015PAMAM Dendrimer/pDNA Functionalized-Magnetic Iron Oxide Nanoparticles for Gene Deliverycitations
- 2012The Effect of PAMAM Dendrimers on Mesenchymal Stem Cell Viability and Differentiationcitations
- 2012Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applicationscitations
- 2011ChemInform Abstract: Poly(alkylidenamines) Dendrimers as Scaffolds for the Preparation of Low‐Generation Ruthenium Based Metallodendrimers
- 2009Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectorscitations
Places of action
Organizations | Location | People |
---|
article
PAMAM Dendrimer/pDNA Functionalized-Magnetic Iron Oxide Nanoparticles for Gene Delivery
Abstract
Herein, we report an easy and ingenious method to functionalize magnetic iron oxide nanoparticles (MNPs) with plasmid DNA (pDNA) to obtain nanohybrid systems suitable for nucleic acid therapy. The nanohybrids were prepared by combining complexes of dendrimers and pDNA (dendriplexes) and poly(styrene) sulfonate-coated MNPs through electrostatic interactions. The effects of the dendrimer generation (generations 2, 4 and 6) and the amine to phosphate group (N/P) ratio on the hydrodynamic diameter, zeta potential, cell viability, cellular internalization and transfection efficiency of the nanohybrids were systematically investigated at different transfection conditions (including incubation time, pDNA concentration, presence or absence of an external magnetic field, and presence or absence of fetal bovine serum). The results confirmed that the nanohybrids were able to transfect NIH 3T3 cells, and that the level of gene expression (the luciferase protein reporter gene was used) was strongly dependent on the dendrimer generation, the N/P ratio, and the pDNA concentration. The best system was based on dendriplex-coated MNPs formed by generation 6 dendrimers at an N/P ratio of 10 that, at optimized conditions, led to a gene expression level which was not significantly different from that obtained only using dendriplexes. In summary, a coherent set of results was reached indicating the potential of the developed nanohybrids as effective gene delivery nanomaterials.