Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matecki, Stefan

  • Google
  • 1
  • 13
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Shear Wave Elastography, a New Tool for Diaphragmatic Qualitative Assessment A Translational Study23citations

Places of action

Chart of shared publication
Lacampagne, Alain
1 / 3 shared
Flatres, Aurélien
1 / 1 shared
Aarab, Yassir
1 / 1 shared
Raynaud, Fabrice
1 / 1 shared
Jaber, Samir
1 / 1 shared
Klouche, Kada
1 / 1 shared
Chapeau, David
1 / 1 shared
Capdevila, Mathieu
1 / 1 shared
Garnier, Fanny
1 / 1 shared
Molinari, Nicolas
1 / 1 shared
Gamon, Lucie
1 / 1 shared
Etienne, Pascal
1 / 8 shared
Jung, Boris
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Lacampagne, Alain
  • Flatres, Aurélien
  • Aarab, Yassir
  • Raynaud, Fabrice
  • Jaber, Samir
  • Klouche, Kada
  • Chapeau, David
  • Capdevila, Mathieu
  • Garnier, Fanny
  • Molinari, Nicolas
  • Gamon, Lucie
  • Etienne, Pascal
  • Jung, Boris
OrganizationsLocationPeople

article

Shear Wave Elastography, a New Tool for Diaphragmatic Qualitative Assessment A Translational Study

  • Lacampagne, Alain
  • Flatres, Aurélien
  • Aarab, Yassir
  • Raynaud, Fabrice
  • Jaber, Samir
  • Klouche, Kada
  • Chapeau, David
  • Capdevila, Mathieu
  • Garnier, Fanny
  • Molinari, Nicolas
  • Gamon, Lucie
  • Matecki, Stefan
  • Etienne, Pascal
  • Jung, Boris
Abstract

Rationale: Prolonged mechanical ventilation is often associated with either a decrease (known atrophy) or an increase (supposed injury) in diaphragmatic thickness. Shear wave elastography is a noninvasive technique that measures shear modulus, a surrogate of tissue stiffness and mechanical properties.Objectives: To describe changes in shear modulus (SM) during the ICU stay and the relationship with alterations in muscle thickness. To perform a comprehensive ultrasound-based characterization of histological and force production changes occurring in the diaphragm.Methods: Translational study using critically ill patients and mechanically ventilated piglets. Serial ultrasound examination of the diaphragm collecting thickness and SM was performed in both patients and piglets. Transdiaphragmatic pressure and diaphragmatic biopsies were collected in piglets.Measurements and Main Results: We enrolled 102 patients, 88 of whom were invasively mechanically ventilated. At baseline, SM was 14.3 ± 4.3 kPa and diaphragm end-expiratory thickness was 2.0 ± 0.5 mm. Decrease or increase by more than 10% from baseline was reported in 86% of the patients for thickness and in 92% of the patients for SM. An increase in diaphragmatic thickness during the stay was associated with a decrease in SM (β = −9.34 ± 4.41; P = 0.03) after multivariable analysis. In the piglet sample, a decrease in SM over 3 days of mechanical ventilation was associated with loss of force production, slow and fast fiber atrophy, and increased lipid droplets accumulation.Conclusions: Increases in diaphragm thickness during critical illness is associated with decreased tissue stiffness as demonstrated by shear wave ultrasound elastography, consistent with the development of muscle injury and weakness.

Topics
  • impedance spectroscopy