Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Ragini

  • Google
  • 10
  • 12
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2021A Molecular Insight of the Role of PIN-1 Promoter Polymorphism (- 667C > T; rs2233679) in Chronic Kidney Disease Patients with Secondary Hyperparathyroidism.1citations
  • 2016Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acidcitations
  • 2015Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysatecitations
  • 2015Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrile1citations
  • 2015Physical, Thermal and Spectroscopic Characterization of Biofield Treated p-Chloro-m-cresol4citations
  • 2015Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatment1citations
  • 2015Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated P-Phenylenediamine and p-Toluidine9citations
  • 2015Physicochemical and Spectral Characterization of Biofield Energy Treated 4-Methylbenzoic Acid2citations
  • 2015Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichlorobenzene2citations
  • 2015Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Impact of Biofield Treatment1citations

Places of action

Chart of shared publication
Vachhani, U.
1 / 1 shared
Raghavani, P.
1 / 1 shared
Parchwani, T.
1 / 1 shared
Dd, Patel
1 / 1 shared
Dholariya, S.
1 / 1 shared
Parchwani, Deepak
1 / 1 shared
Rajput, A.
1 / 4 shared
Nayak, Gopal
9 / 46 shared
Branton, Alice
9 / 46 shared
Trivedi, Mahendra Kumar
9 / 61 shared
Trivedi, Dahryn
9 / 44 shared
Jana, Snehasis
9 / 51 shared
Chart of publication period
2021
2016
2015

Co-Authors (by relevance)

  • Vachhani, U.
  • Raghavani, P.
  • Parchwani, T.
  • Dd, Patel
  • Dholariya, S.
  • Parchwani, Deepak
  • Rajput, A.
  • Nayak, Gopal
  • Branton, Alice
  • Trivedi, Mahendra Kumar
  • Trivedi, Dahryn
  • Jana, Snehasis
OrganizationsLocationPeople

article

Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrile

  • Nayak, Gopal
  • Singh, Ragini
  • Branton, Alice
  • Trivedi, Mahendra Kumar
  • Trivedi, Dahryn
  • Jana, Snehasis
Abstract

Para-chlorobenzonitrile (p-CBN) is widely used as a chemical intermediate in the manufacturing of dyes, medicines, and pesticides, however; sometimes it may cause runaway reactions at high temperatures. The current study was designed to evaluate the impact of biofield energy treatment on the physical, thermal, and spectroscopic properties of p-CBN. The analysis was done by dividing the p-CBN samples into two groups that served as control and treated. The treated group received Mr. Trivedi’s biofield treatment. Subsequently, the control and treated samples were evaluated using various analytical techniques such as X-ray diffraction (XRD), surface area analyser, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) and UV-visible (UV-Vis) spectroscopy. The XRD results showed an increase in the crystallite size (66.18 nm) of the treated sample as compared to the control sample (53.63 nm). The surface area analysis of the treated sample also showed 14.19% decrease in the surface area as compared to control. Furthermore, DSC analysis results showed that the latent heat of fusion of the treated p-CBN increased considerably by 5.94% as compared to control. However, the melting temperature of the treated sample did not show any considerable change from the control sample. Besides, TGA/DTG studies showed that Tmax(the temperature at which the sample lost its maximum weight) was increased by 5.22% along with an increase in its onset of thermal decomposition temperature i.e. 96.80°C in the biofield treated p-CBN as compared to the control sample (84.65°C). This indicates that the thermal stability of treated p-CBN sample might increase as compared to the control sample. However, no change was found in the FT-IR and UV-Vis spectroscopic character of the treated p-CBN as compared to the control. These findings suggest that the biofield treatment significantly altered the physical and thermal properties of p-CBN, which could make it more useful as a chemical intermediate.

Topics
  • impedance spectroscopy
  • surface
  • x-ray diffraction
  • thermogravimetry
  • differential scanning calorimetry
  • thermal decomposition
  • melting temperature
  • heat of fusion
  • thermal decomposition temperature