People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Branton, Alice
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (46/46 displayed)
- 2019Consciousness Energy Healing Treatment and its Impact on Physicochemical and Thermal Properties of Tellurium
- 2019Evaluation of Physicochemical and Thermal Properties of the Consciousness Energy Healing Treated Tellurium
- 2019Characterization of the biofield energy treated aluminium using PSA, PXRD, and TGA/DTG analytical techniques
- 2019Impact of the Trivedi Effect® on the Physicochemical Properties of Antimony
- 2018Evaluation of the Physicochemical and Thermal Properties of Antimony: Influence of the Energy of Consciousness Healing Treatment
- 2018Assessment of the Influence of Biofield Energy Treatment on the Physicochemical and Thermal Properties of Lead Using PXRD, PSA, and DSC
- 2018Evaluation of the Physicochemical and Thermal Properties of Consciousness Energy Healing Treated Lead Using PXRD, PSA, and DSC Analysiscitations
- 2018Evaluation of the Physicochemical and Thermal Properties of Chromium Trioxide (CrO3): Impact of Consciousness Energy Healing Treatmentcitations
- 2018Spectroscopic and Calorimetric Evaluation of the Consciousness Energy Healing Treated Lead
- 2017Assessment of Physicochemical and Thermal Properties of Energy of Consciousness Healing Treated Ferrous Sulphate Using PXRD, PSD, DSC, and TGA/DTG Analysiscitations
- 2016Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acid
- 2015Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysate
- 2015Physicochemical and Spectroscopic Characterization of p-Chlorobenzaldehyde: An Impact of Biofield Energy Treatment
- 2015Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrilecitations
- 2015Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powdercitations
- 2015Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powder
- 2015Characterization of Physicochemical and Spectroscopic Properties of Biofield Energy Treated Bio Peptone
- 2015Physicochemical and Spectroscopic Characterization of Yeast Extract Powder After the Biofield Energy Treatmentcitations
- 2015Physical, Thermal and Spectroscopic Characterization of Biofield Treated p-Chloro-m-cresolcitations
- 2015Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatmentcitations
- 2015Effect of Biofield Treatment on Physical, Thermal, and Spectral Properties of SFRE 199-1 Mammalian Cell Culture Medium
- 2015Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatmentcitations
- 2015Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazolecitations
- 2015Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated P-Phenylenediamine and p-Toluidinecitations
- 2015Evaluation of Physical, Thermal and Spectral Parameters of Biofield Energy Treated Methylsulfonylmethanecitations
- 2015Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Methyl-2-Naphthyl Ethercitations
- 2015Physicochemical and Spectroscopic Properties of Biofield Energy Treated Protose
- 2015Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenylcitations
- 2015Influence of Biofield Treatment on Physical and Structural Characteristics of Barium Oxide and Zinc Sulfidecitations
- 2015Physical, Thermal and Spectroscopical Characterization of Biofield Treated Triphenylmethane: An Impact of Biofield Treatmentcitations
- 2015Characterization of Physical, Thermal and Spectral Properties of Biofield Treated o-Aminophenolcitations
- 2015Physicochemical and Spectroscopic Characterization of Biofield Energy Treated p-Anisidinecitations
- 2015Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Murashige and Skoog Plant Cell Culture Mediacitations
- 2015Physicochemical and Spectral Characterization of Biofield Energy Treated 4-Methylbenzoic Acidcitations
- 2015Physicochemical Characterization of Biofield Energy Treated Calcium Carbonate Powdercitations
- 2015Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichlorobenzenecitations
- 2015Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol
- 2015Physicochemical and Atomic Characterization of Silver Powder after Biofield Treatmentcitations
- 2015Characterization of Physicochemical and Thermal Properties of Chitosan And Sodium Alginate after Biofield Treatmentcitations
- 2015Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Impact of Biofield Treatmentcitations
- 2015Physical, Thermal and Spectral Properties of Biofield Energy Treated 2,4-Dihydroxybenzophenone
- 2015Characterization of Physicochemical and Thermal Properties of Biofield Treated Ethyl Cellulose and Methyl Cellulose
- 2015Physical, Atomic and Thermal Properties of Biofield Treated Lithium Powdercitations
- 2015Physical and Structural Characterization of Biofield Energy Treated Carbazolecitations
- 2015Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatmentcitations
- 2015Physicochemical Evaluation of Biofield Treated Peptone And Malmgren Modified Terrestrial Orchid Mediumcitations
Places of action
Organizations | Location | People |
---|
article
Assessment of Physicochemical and Thermal Properties of Energy of Consciousness Healing Treated Ferrous Sulphate Using PXRD, PSD, DSC, and TGA/DTG Analysis
Abstract
Ferrous sulphate is an inorganic salt of iron used to treat iron deficiency anaemia and maintain the overall health in our body. The current study was designed to evaluate the impact of The Trivedi Effect®-Energy of Consciousness Healing Treatment on the physicochemical and thermal properties of ferrous sulphate using PXRD, PSA, DSC, and TGA/DTG analysis. Ferrous sulphate test item was divided into two parts, one part was considered as control (without Biofield Energy Treatment), whereas the second part received The Trivedi Effect®-Biofield Energy Treatment remotely by the renowned Biofield Energy Healer, Alice Branton. The PXRD data revealed that the relative intensities and crystallite size of the characteristic diffraction peaks in the treated sample were significantly altered from -26.74% to 421.23% and from -24.93% to 42.91%, respectively compared with the control sample. The average crystallite size of the treated sample was significantly increased by 6.39% compared to the control sample. The particle size values at d10, d50, d90 and D(4, 3) values were significantly increased by 30.43%, 35.94%, 19.49%, and 26.26%, respectively and the surface area was significantly decreased by 53.26% compared with the control sample. The melting temperature of the treated sample in the 1st and 3rd peaks was increased by 1.61% and 1.04% respectively, whereas decreased by 5.71% and 1.04% in the 2nd and 4th peaks, respectively compared with the control sample. Consequently, the total latent heat of fusion to transition from FeSO4•7H2O to FeSO4 was decreased by 0.44% in the treated sample compared with the control sample. The TGA thermograms of both the samples exhibited four steps of thermal degradation. The total weight loss in the treated sample was increased by 0.62% compared with the control sample. The maximum thermal decomposition temperature (Tmax) of treated sample was increased by 5.81% and 0.26% in the 1st and 4th peak respectively, but the Tmax of 2nd and 3rd peaks were decreased by 2.58% and 2.38%, respectively compared to the control sample. Overall, DSC and TGA/DTG of the treated sample showed that the thermal stability was changed compared with the control sample. The Trivedi Effect®-Consciousness Energy Healing Treatment might lead to the production of a polymorphic form of ferrous sulphate, which would have better powder flowability and appearance with altered thermal stability compared to the control sample. Alice’s Biofield Energy Treated ferrous sulphate would be useful to design better nutraceutical/pharmaceutical formulations, which could provide better therapeutic response against iron deficiency anaemia.