Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Ragini

  • Google
  • 10
  • 12
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2021A Molecular Insight of the Role of PIN-1 Promoter Polymorphism (- 667C > T; rs2233679) in Chronic Kidney Disease Patients with Secondary Hyperparathyroidism.1citations
  • 2016Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acidcitations
  • 2015Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysatecitations
  • 2015Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrile1citations
  • 2015Physical, Thermal and Spectroscopic Characterization of Biofield Treated p-Chloro-m-cresol4citations
  • 2015Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatment1citations
  • 2015Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated P-Phenylenediamine and p-Toluidine9citations
  • 2015Physicochemical and Spectral Characterization of Biofield Energy Treated 4-Methylbenzoic Acid2citations
  • 2015Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichlorobenzene2citations
  • 2015Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Impact of Biofield Treatment1citations

Places of action

Chart of shared publication
Vachhani, U.
1 / 1 shared
Raghavani, P.
1 / 1 shared
Parchwani, T.
1 / 1 shared
Dd, Patel
1 / 1 shared
Dholariya, S.
1 / 1 shared
Parchwani, Deepak
1 / 1 shared
Rajput, A.
1 / 4 shared
Nayak, Gopal
9 / 46 shared
Branton, Alice
9 / 46 shared
Trivedi, Mahendra Kumar
9 / 61 shared
Trivedi, Dahryn
9 / 44 shared
Jana, Snehasis
9 / 51 shared
Chart of publication period
2021
2016
2015

Co-Authors (by relevance)

  • Vachhani, U.
  • Raghavani, P.
  • Parchwani, T.
  • Dd, Patel
  • Dholariya, S.
  • Parchwani, Deepak
  • Rajput, A.
  • Nayak, Gopal
  • Branton, Alice
  • Trivedi, Mahendra Kumar
  • Trivedi, Dahryn
  • Jana, Snehasis
OrganizationsLocationPeople

article

Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysate

  • Nayak, Gopal
  • Singh, Ragini
  • Branton, Alice
  • Trivedi, Mahendra Kumar
  • Trivedi, Dahryn
  • Jana, Snehasis
Abstract

The hydrolysed vegetable proteins are acidic or enzymatic hydrolytic product of proteins derived from various sources such as milk, meat or vegetables. The current study was designed to evaluate the impact of biofield energy treatment on the various physicochemical and spectra properties of Hi VegTM acid hydrolysate i.e. a hydrolysed vegetable protein. The Hi VegTM acid hydrolysate sample was divided into two parts that served as control and treated sample. The treated sample was subjected to the biofield energy treatment and its properties were analysed using particle size analyser, X-ray diffraction (XRD), surface area analyser, UV-visible and infrared (FT-IR) spectroscopy, and thermogravimetric analysis. The results of various parameters were compared with the control (untreated) part. The XRD data showed the decrease in crystallite size of treated sample from 110.27 nm (control) to 79.26 nm. The particle size was also reduced in treated sample as 162.13 μm as compared to the control sample (168.27 μm). Moreover, the surface area analysis revealed the 63.79% increase in the surface area of the biofield treated sample as compared to the control. The UV-Vis spectra of both samples i.e. control and treated showed the absorbance at same wavelength. However, the FT-IR spectroscopy revealed the shifting in peaks corresponding to N-H, C-H, C=O, C-N, and C-S functional groups in the treated sample with respect to the control. The thermal analysis also revealed the alteration in degradation pattern along with increase in onset temperature of degradation and maximum degradation temperature in the treated sample as compared to the control. The overall data showed the impact of biofield energy treatment on the physicochemical and spectroscopic properties of the treated sample of Hi VegTM acid hydrolysate. The biofield treated sample might show the improved solubility, wettability and thermal stability profile as compared to the control sample.

Topics
  • surface
  • x-ray diffraction
  • thermogravimetry
  • Fourier transform infrared spectroscopy
  • degradation temperature