People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Branton, Alice
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (46/46 displayed)
- 2019Consciousness Energy Healing Treatment and its Impact on Physicochemical and Thermal Properties of Tellurium
- 2019Evaluation of Physicochemical and Thermal Properties of the Consciousness Energy Healing Treated Tellurium
- 2019Characterization of the biofield energy treated aluminium using PSA, PXRD, and TGA/DTG analytical techniques
- 2019Impact of the Trivedi Effect® on the Physicochemical Properties of Antimony
- 2018Evaluation of the Physicochemical and Thermal Properties of Antimony: Influence of the Energy of Consciousness Healing Treatment
- 2018Assessment of the Influence of Biofield Energy Treatment on the Physicochemical and Thermal Properties of Lead Using PXRD, PSA, and DSC
- 2018Evaluation of the Physicochemical and Thermal Properties of Consciousness Energy Healing Treated Lead Using PXRD, PSA, and DSC Analysiscitations
- 2018Evaluation of the Physicochemical and Thermal Properties of Chromium Trioxide (CrO3): Impact of Consciousness Energy Healing Treatmentcitations
- 2018Spectroscopic and Calorimetric Evaluation of the Consciousness Energy Healing Treated Lead
- 2017Assessment of Physicochemical and Thermal Properties of Energy of Consciousness Healing Treated Ferrous Sulphate Using PXRD, PSD, DSC, and TGA/DTG Analysiscitations
- 2016Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acid
- 2015Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysate
- 2015Physicochemical and Spectroscopic Characterization of p-Chlorobenzaldehyde: An Impact of Biofield Energy Treatment
- 2015Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrilecitations
- 2015Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powdercitations
- 2015Potential Impact of Biofield Energy Treatment on the Atomic, Physical And Thermal Properties Indium Powder
- 2015Characterization of Physicochemical and Spectroscopic Properties of Biofield Energy Treated Bio Peptone
- 2015Physicochemical and Spectroscopic Characterization of Yeast Extract Powder After the Biofield Energy Treatmentcitations
- 2015Physical, Thermal and Spectroscopic Characterization of Biofield Treated p-Chloro-m-cresolcitations
- 2015Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatmentcitations
- 2015Effect of Biofield Treatment on Physical, Thermal, and Spectral Properties of SFRE 199-1 Mammalian Cell Culture Medium
- 2015Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatmentcitations
- 2015Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazolecitations
- 2015Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated P-Phenylenediamine and p-Toluidinecitations
- 2015Evaluation of Physical, Thermal and Spectral Parameters of Biofield Energy Treated Methylsulfonylmethanecitations
- 2015Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Methyl-2-Naphthyl Ethercitations
- 2015Physicochemical and Spectroscopic Properties of Biofield Energy Treated Protose
- 2015Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenylcitations
- 2015Influence of Biofield Treatment on Physical and Structural Characteristics of Barium Oxide and Zinc Sulfidecitations
- 2015Physical, Thermal and Spectroscopical Characterization of Biofield Treated Triphenylmethane: An Impact of Biofield Treatmentcitations
- 2015Characterization of Physical, Thermal and Spectral Properties of Biofield Treated o-Aminophenolcitations
- 2015Physicochemical and Spectroscopic Characterization of Biofield Energy Treated p-Anisidinecitations
- 2015Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Murashige and Skoog Plant Cell Culture Mediacitations
- 2015Physicochemical and Spectral Characterization of Biofield Energy Treated 4-Methylbenzoic Acidcitations
- 2015Physicochemical Characterization of Biofield Energy Treated Calcium Carbonate Powdercitations
- 2015Physical, Thermal and Spectroscopic Studies on Biofield Treated p-Dichlorobenzenecitations
- 2015Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol
- 2015Physicochemical and Atomic Characterization of Silver Powder after Biofield Treatmentcitations
- 2015Characterization of Physicochemical and Thermal Properties of Chitosan And Sodium Alginate after Biofield Treatmentcitations
- 2015Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Impact of Biofield Treatmentcitations
- 2015Physical, Thermal and Spectral Properties of Biofield Energy Treated 2,4-Dihydroxybenzophenone
- 2015Characterization of Physicochemical and Thermal Properties of Biofield Treated Ethyl Cellulose and Methyl Cellulose
- 2015Physical, Atomic and Thermal Properties of Biofield Treated Lithium Powdercitations
- 2015Physical and Structural Characterization of Biofield Energy Treated Carbazolecitations
- 2015Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatmentcitations
- 2015Physicochemical Evaluation of Biofield Treated Peptone And Malmgren Modified Terrestrial Orchid Mediumcitations
Places of action
Organizations | Location | People |
---|
article
Physicochemical and Spectral Characterization of Biofield Energy Treated 4-Methylbenzoic Acid
Abstract
The present study was aimed to analyse the impact of biofield energy treatment on the physicochemical and spectral properties of 4-MBA. The compound was divided into two parts which are referred as the control and treated sample. The treated sample was subjected to Mr. Trivedi’s biofield energy treatment and analysed with respect to the control sample. The various analytical techniques used were X-ray diffraction (XRD), surface area analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), and UV-visible spectroscopy. The XRD data revealed the alteration in the relative intensities of the peaks as well as reduction in the average crystallite size (24.62%) of the treated sample as compared to the control. The surface area analysis revealed a slight reduction in the surface area of the treated sample. The differential scanning calorimetry analysis reported a slight increase in the melting point while significant reduction in the latent heat of fusion of the treated sample (39.96 J/g) as compared to the control (133.72 J/g). Moreover, the TGA thermogram of the treated sample revealed the reduction in the onset temperature and maximum thermal degradation temperature as compared to the control. However, the FT-IR and UV-Vis spectra of treated sample did not show any significant alteration as compared to their respective control spectra. The overall data indicated the improved physical and thermal properties of the biofield treated 4-MBA sample that might be helpful in increasing the reaction kinetics, where it will be used as a reaction intermediate.