Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cordeiro, Ana L.

  • Google
  • 4
  • 10
  • 146

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2011Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films36citations
  • 2011Enzyme immobilization on reactive polymer films13citations
  • 2011Enzymes for antifouling strategies54citations
  • 2009Temperature dependent physicochemical properties of poly(N- isopropylacrylamide-co-N-(1-phenylethyl) acrylamide) thin films43citations

Places of action

Chart of shared publication
Werner, Carsten
4 / 45 shared
Lenk, Tina
1 / 1 shared
Salchert, Katrin
1 / 1 shared
Pompe, Tilo
1 / 4 shared
Schäfer, Nicole
1 / 1 shared
Grundke, Karina
1 / 4 shared
Gramm, Stefan
1 / 5 shared
Nitschke, Mirko
1 / 8 shared
Janke, Andreas
1 / 10 shared
Zimmermann, Ralf
1 / 11 shared
Chart of publication period
2011
2009

Co-Authors (by relevance)

  • Werner, Carsten
  • Lenk, Tina
  • Salchert, Katrin
  • Pompe, Tilo
  • Schäfer, Nicole
  • Grundke, Karina
  • Gramm, Stefan
  • Nitschke, Mirko
  • Janke, Andreas
  • Zimmermann, Ralf
OrganizationsLocationPeople

article

Enzymes for antifouling strategies

  • Werner, Carsten
  • Cordeiro, Ana L.
Abstract

<p>During the past decades, much effort has been made to find efficient alternative solutions to prevent and/or disrupt the adhesion of fouling organisms to surfaces. The use of enzymes emerges among the investigated approaches as one of the favorite candidate antifouling technologies due to enzymes' biodegradability and affordable prices. An overview of the different enzymatic antifouling strategies is presented, highlighting the most promising groups of enzymes, and their utilization upon surface-confinement to control biofouling. While the main strategies to control marine biofouling include the degradation of secreted adhesives and the production of antifouling compounds, the main concepts to control pathogenic biofilms are based on cell lysis and on the degradation of extracellular matrix polymers. Although immobilization can improve enzyme stability, activity and antifouling performance, up to date relatively few scientific articles concerning the use of immobilized enzymes to control biofouling have been published. The successful incorporation of enzymes into coatings yielding surfaces with broad antifouling spectrum and long-term efficacy remains a challenge.</p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • polymer