Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Franco, Brian

  • Google
  • 2
  • 12
  • 206

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression23citations
  • 2017Spatial Control of Functional Response in 4D-Printed Active Metallic Structures183citations

Places of action

Chart of shared publication
Hochberg, Leigh R.
1 / 1 shared
Harrison, Matthew T.
1 / 1 shared
Brandman, David M.
1 / 1 shared
Kelemen, Jessica N.
1 / 1 shared
Elwany, Alaa
1 / 5 shared
Arroyave, Raymundo
1 / 10 shared
Liu, Jun
1 / 25 shared
Karayagiz, Kubra
1 / 2 shared
Tapia, Gustavo
1 / 1 shared
Johnson, Luke
1 / 3 shared
Ma, Ji
1 / 5 shared
Karaman, Ibrahim
1 / 11 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Hochberg, Leigh R.
  • Harrison, Matthew T.
  • Brandman, David M.
  • Kelemen, Jessica N.
  • Elwany, Alaa
  • Arroyave, Raymundo
  • Liu, Jun
  • Karayagiz, Kubra
  • Tapia, Gustavo
  • Johnson, Luke
  • Ma, Ji
  • Karaman, Ibrahim
OrganizationsLocationPeople

article

Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression

  • Hochberg, Leigh R.
  • Harrison, Matthew T.
  • Brandman, David M.
  • Kelemen, Jessica N.
  • Franco, Brian
Abstract

Intracortical brain computer interfaces can enable individuals with paralysis to control external devices through voluntarily modulated brain activity. Decoding quality has been previously shown to degrade with signal nonstationarities—specifically, the changes in the statistics of the data between training and testing data sets. This includes changes to the neural tuning profiles and baseline shifts in firing rates of recorded neurons, as well as nonphysiological noise. While progress has been made toward providing long-term user control via decoder recalibration, relatively little work has been dedicated to making the decoding algorithm more resilient to signal nonstationarities. Here, we describe how principled kernel selection with gaussian process regression can be used within a Bayesian filtering framework to mitigate the effects of commonly encountered nonstationarities. Given a supervised training set of (neural features, intention to move in a direction)-pairs, we use gaussian process regression to predict the intention given the neural data. We apply kernel embedding for each neural feature with the standard radial basis function. The multiple kernels are then summed together across each neural dimension, which allows the kernel to effectively ignore large differences that occur only in a single feature. The summed kernel is used for real-time predictions of the posterior mean and variance under a gaussian process framework. The predictions are then filtered using the discriminative Kalman filter to produce an estimate of the neural intention given the history of neural data. We refer to the multiple kernel approach combined with the discriminative Kalman filter as the MK-DKF. We found that the MK-DKF decoder was more resilient to nonstationarities frequently encountered in-real world settings yet provided similar performance to the currently used Kalman decoder. These results demonstrate a method by which neural decoding can be made more resistant to nonstationarities.

Topics
  • impedance spectroscopy