Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lafont, Antoine

  • Google
  • 1
  • 6
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Head-to-Head Comparison of a Drug-Free Early Programmed Dismantling Polylactic Acid Bioresorbable Scaffold and a Metallic Stent in the Porcine Coronary Artery30citations

Places of action

Chart of shared publication
Sharkawi, Tahmer
1 / 4 shared
Leest, Machiel Van Der
1 / 1 shared
Raveleau, Marine
1 / 1 shared
Leclerc, Guy
1 / 1 shared
Durand, Eric
1 / 1 shared
Vert, Michel
1 / 4 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Sharkawi, Tahmer
  • Leest, Machiel Van Der
  • Raveleau, Marine
  • Leclerc, Guy
  • Durand, Eric
  • Vert, Michel
OrganizationsLocationPeople

article

Head-to-Head Comparison of a Drug-Free Early Programmed Dismantling Polylactic Acid Bioresorbable Scaffold and a Metallic Stent in the Porcine Coronary Artery

  • Sharkawi, Tahmer
  • Lafont, Antoine
  • Leest, Machiel Van Der
  • Raveleau, Marine
  • Leclerc, Guy
  • Durand, Eric
  • Vert, Michel
Abstract

We aimed to evaluate a new drug-free fully bioresorbable lactic acid-based scaffold designed to allow early dismantling synchronized with artery wall healing in comparison with a bare metal stent (BMS). Twenty-three BMS (3.0×12 mm) and 36 lactic acid-based bioresorbable scaffolds (BRS, 3.0×11 mm) were implanted in porcine coronary arteries. QCA and optical coherence tomographic analyses were performed immediately after implantation and repeated after 1, 3, and 6 months. Microcomputed tomography was used to detect scaffold dismantling. Polymer degradation was evaluated throughout the study. The primary end-point was late lumen loss, and the secondary end-points were scaffold/stent diameter and acute recoil. Acute recoil was low and comparable between the BRS and the BMS groups (4.6±6.7 versus 4.6±5.1%; P=0.98). BRS outer diameter increased significantly from 1 to 6 months indicating late positive scaffold remodeling (P<0.0001), whereas BMS diameter remained constant (P=0.159). Late lumen loss decreased significantly from 1 to 6 months in the BRS group (P=0.003) without significant difference between BRS and BMS groups at 6 months (P=0.68). Microcomputed tomography identified BRS dismantling starting at 3 months, and weight-average molar masses of scaffold parts were 20% and 14% of their initial values at 3 and 6 months. BRS and BMS have similar 6-month outcomes in porcine coronary arteries. Interestingly, BRS dismantling was detected from 3 months and resulted in late lumen enlargement by increased scaffold diameter at 6 months.

Topics
  • polymer
  • tomography