People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Raman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Study on Nanomaterials Coated Natural Coir Fibers as Crack Arrestor in Cement Compositecitations
- 2024Study on Nanomaterials Coated Natural Coir Fibers as Crack Arrestor in Cement Compositecitations
- 2023Optimization study on wear behaviour of aluminium 7075 hybrid composite containing silicon carbide and aluminium oxide using Taguchi methodcitations
- 2023Asymmetric/Symmetric Glass-Fibre-Filled Polyamide 66 Gears—A Systematic Fatigue Life Studycitations
- 2023Investigation of copper reinforced Acrylonitrile Butadiene Styrene and Nylon 6 based thermoplastic polymer nanocomposite filaments for 3D printing of electronic componentscitations
- 2023Additive manufacturing and characterization of titanium wall used in nuclear applicationcitations
- 2023Characterisation of additively manufactured titanium wall: Mechanical and microstructural aspectscitations
- 2022PbS nanoparticles anchored 1D- CdSe nanowires:Core-shell design towards energy storage supercapacitor applicationcitations
- 2022Implementation of Taguchi and Genetic Algorithm Techniques for Prediction of Optimal Part Dimensions for Polymeric Biocomposites in Fused Deposition Modelingcitations
- 2022Implementation of Taguchi and Genetic Algorithm Techniques for Prediction of Optimal Part Dimensions for Polymeric Biocomposites in Fused Deposition Modelingcitations
- 2022Investigation of Tool Wear Rate during EDM for Aluminium Metal Matrix Composite (5-10% TiB2) Prepared by Squeeze Castingcitations
- 2022Performance Comparison and Critical Finite Element Based Experimental Analysis of Various Forms of Reinforcement Retaining Structural Systemcitations
- 2021Investigations on melt flow rate and tensile behaviour of single, double and triple sized copper reinforced thermo-plastic compositescitations
- 2021Environmental, economical and technological Analysis of MQL assisted machining of Al-Mg-Zr Alloy using PCD toolcitations
- 2020Impact of process parameters of resistance spot welding on mechanical properties and micro hardness of stainless steel 304 weldmentscitations
- 2020Metal spray layered hybrid additive manufacturing of PLA composite structures: Mechanical, thermal and morphological propertiescitations
- 2020Investigating the influence of WEDM process parameters in machining of hybrid aluminum compositescitations
- 2020Non-Conventional Technique of Machining and Metallization of Polymer Components
- 2020Mechanical Strength Enhancement of 3D Printed Acrylonitrile Butadiene Styrene Polymer Components Using Neural Network Optimization Algorithmcitations
Places of action
Organizations | Location | People |
---|
article
Study on Nanomaterials Coated Natural Coir Fibers as Crack Arrestor in Cement Composite
Abstract
<jats:p>The process of inclusion of carbon nanotubes as fibers in cement paste has been proved to have optimistic effect as it enhances the tensile property of cement paste composite. Coir fibers have exceptional mechanical qualities and are thus employed as reinforcement in cement composites. Epoxy resin, which has a high Young’s modulus, is an ideal component for bonding carbon nanotubes (CNTs) to coir fiber. This paper describes a novel kind of nanocomposite made of L-12 epoxy resin and CNTs at the nanolevel, along with coir fibers at the microlevel which operate as crack arrestors. To remove surface contaminants, coir fibers are first treated with sodium hydroxide (NaOH). Epoxy/CNTs polymer coatings were developed at varying CNTs fractions (0.05, 0.1, 0.15, and 0.2 wt.% of cement). Multiwalled CNTs were combined in distilled water, followed by epoxy resin and hardener (9 : 1 v/v) polymer in an ultrasonic sonicator for 90 min to ensure full dispersion of CNTs within the epoxy polymer. This blend is now coated on the treated clustered coir fiber (length 10 cm, 10 strands) and reinforced along the length of a cement composite beam 20 mm × 20 mm × 80 mm in size. Tensile and three-point tests were performed to evaluate the mechanical characteristics of the hybrid composite. The linear elastic finite element analysis is employed to distinguish their failure phenomena via fatigue or fracture behavior. The microstructure behavior and the effect of coating material on the coir fibers were investigated using scanning electron microscope and EDX analysis. The reinforcing impact of nanopolymer coated coir fiber in cement composite diminished the tensile and flexural strength after 0.1 wt.% of CNT fraction but increased the composite’s durability and Young’s modulus. Fourier transform infrared spectroscopy analysis was carried out to assess the chemical interaction between the epoxy/CNTs and the coir fibers. The simulation was performed using ANSYS workbench, and the modeling results were within an acceptable 10% range of the experimental data. Nevertheless, it can be concluded that the hybrid composite is capable of enhancing the composite’s stress and strain capacity by regulating the fracture propagation process at the crack’s end.</jats:p>