Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lee, Sae Youn

  • Google
  • 1
  • 2
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Pd@CoFe Alloys on N-Doped Carbon Derived from Charred Tissue Paper as Synergistic Bifunctional Oxygen Electrocatalysts3citations

Places of action

Chart of shared publication
Bhuvanendran, Narayanamoorthy
1 / 2 shared
Kumar, R. Selva
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Bhuvanendran, Narayanamoorthy
  • Kumar, R. Selva
OrganizationsLocationPeople

article

Pd@CoFe Alloys on N-Doped Carbon Derived from Charred Tissue Paper as Synergistic Bifunctional Oxygen Electrocatalysts

  • Lee, Sae Youn
  • Bhuvanendran, Narayanamoorthy
  • Kumar, R. Selva
Abstract

<jats:p>Integrating more active components into a catalyst material could facilitate the development of multifunctional electrocatalysts for energy conversion and storage applications. In this study, we developed a multifunctional electrocatalyst, namely, Pd alloyed with Co-Fe deposited on N-doped mesoporous carbon derived from tissue paper (Pd@Co-Fe/N-TDC). The synergism in Pd@Co-Fe/N-TDC, stemming from the interatomic alloy between Pd and Co-Fe, N-doped mesoporous carbon with defective surfaces, distribution of polyhedral Pd nanoparticles, and strong metal-support interfacial interaction, resulted in significantly high electrocatalytic performance for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Pd@Co-Fe/N-TDC was found to be an efficient bifunctional oxygen electrocatalyst, and this was evidenced by a high onset potential (1.01 V) and kinetic current density (2.6 mA/cm2) for the ORR and by a low overpotential (296 mV) and a low Tafel slope value (38 mV/dec) for the OER, along with a small <jats:inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"><mi>Δ</mi><mi>E</mi></math></jats:inline-formula> of 736 mV. The catalyst also exhibited high durability for both ORR and OER, even after 10000 and 5000 cycles, respectively. Theoretical assessment provides an insight into the synergism of active metal sites in Pd@Co-Fe/N-TDC, which showed its potential for use as a non-Pt electrocatalyst for energy applications.</jats:p>

Topics
  • nanoparticle
  • density
  • surface
  • Carbon
  • Oxygen
  • current density
  • durability