Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matrood, Haider Mayoof

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Enhancing Efficiency of Luminescent Solar Concentrators through Laser Grooving Techniquescitations

Places of action

Chart of shared publication
Ahmadi-Kandjani, Sohrab
1 / 3 shared
Asgari, Asgari
1 / 12 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ahmadi-Kandjani, Sohrab
  • Asgari, Asgari
OrganizationsLocationPeople

article

Enhancing Efficiency of Luminescent Solar Concentrators through Laser Grooving Techniques

  • Ahmadi-Kandjani, Sohrab
  • Matrood, Haider Mayoof
  • Asgari, Asgari
Abstract

<jats:p>This study presents an innovative approach to mitigate the cost of solar devices by employing luminescent solar concentrators (LSCs) that act as waveguides to direct sunlight toward photovoltaic (PV) cells. LSCs, while effective, face challenges such as escape cones and reabsorption losses during light concentration. To address these issues, we investigate the application of a CO<jats:sub>2</jats:sub> laser grooving technique to create microstructure grooves with varying characteristics (depths and spacing) on polymeric waveguide sheets. Our findings reveal a significant improvement in optical properties within the 500–600 nm range, aligning well with the emission spectrum of luminophores in the polymer matrix plate and the solar cell. Current–voltage (I–V) measurements of silicon solar cells attached to the LSC edge exhibit enhanced performance postlaser grooving. Additionally, we explore the characteristics of the solar cell attached to the scribed LSCs under different incident light angles. The champion LSC device, built with a groove depth of 492 nm and a spacing of 0.2 mm, achieved a power conversion efficiency of 25.47%, an open‐circuit voltage of 326.8 mV, a short‐circuit current density of 153.28 mA/cm<jats:sup>2</jats:sup>, and a fill factor of 50.8% under 100 mW/cm<jats:sup>2</jats:sup> illumination (AM 1.5 G). These results are in good agreement with the predictions. Experimental and predicted results indicate that the introduction of extensive microstructure grooves not only minimizes optical losses from the escape cone but also enhances the optical and electrical properties of LSC systems. Scribed LSC devices emerge as a practical choice for integration into zero‐ or net‐energy buildings.</jats:p>

Topics
  • density
  • microstructure
  • polymer
  • Silicon
  • current density
  • additive manufacturing
  • power conversion efficiency
  • liquid-solid chromatography